Меню

Фаза укорочения в сокращении мышцы

Фаза укорочения в сокращении мышцы

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ). ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей, мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

• Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

• Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

Рис. 2. Механизм мышечного сокращения.
Объяснение – в тексте.

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

Рис. 3. Механизм сопряжения возбуждения и сокращения.
Объяснение – в тексте.

• В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

• Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

• К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

• латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

• фаза укорочения (около 50 мс);

• фаза расслабления (около 50 мс).

Рис. 4. Характеристика одиночного мышечного сокращения. Происхождение зубчатого и гладкого тетануса.

Б – фазы и периоды иышечного сокращения,
Б – режимы мышечного сокращения, возникающие при разной частоте стимуляции мышцы.

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

• Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

• При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

• При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

• числом ДЕ, участвующих в сокращении;

• частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

• динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

• статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

• динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

• изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

• изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

• ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Физиологические свойства мышц

Таблица 7.1.Сравнительная характеристика скелетных и гладких мышц

Источник

Одиночное мышечное сокращение, его фазы. Суммация сокращений

Одиночное мышечное сокращение продолжается около 100 мс и развивается по фазам:

Латентный (скрытый) период продолжается до 3 мс и представляет время от начала действия раздражителя до начала видимого ответа (сокращения) мышцы.

Фаза сокращения продолжается 40-50 мс характеризуется укорочением длины мышечного волокна, что связано с увеличением концентрации Сa 2+ в протофибриллярных пространствах и образованием актин-миозиновых связей.

Фаза расслабления продолжается 50-60 мс характеризуется увеличением (восстановлением) длины волокна. Возникает при снижении концентрации Ca 2+ в протофибриллярных пространствах и ослаблением актин-миозиновых связей.

Если на мышцу наносятся два и более раздражений с интервалом менее продолжительности одиночного сокращения, но более продолжительности рефрактрного периода ПД, то происходит суммация сокращений, в результате которой сократительный эффект усиливается.

Существует два типа суммации: частичная и полная

Частичная (или неполная) суммация возникает, если

· интервал между раздражениями меньше продолжительности одиночного мышечного сокращения;

· больше продолжительности фазы сокращения, т.е. если второе раздражение попадает в фазу расслабления.

В результате амплитуда мышечного сокращения возрастает с образованием двух вершин.

Полная суммация возникает, если:

· интервал между раздражениями меньше продолжительности фазы сокращения, но больше продолжительности рефрактерного периода;

· второе раздражение попадает в фазу сокращения.

В результате амплитуда мышечного сокращения изменяется (увеличивается или уменьшается относительно одиночного сокращения) с образованием одной вершины

Увеличение или уменьшение амплитуды связано с изменением возбудимости в процессе возбуждения и зависит от того, в какую фазу измененной возбудимости наносится следующее раздражение.

Известно, что в период формирования пикового потенциала возбудимость ткани снижена (фаза абсолютной и фаза относительной рефрактерности). Поэтому, если следующее раздражение будет наноситься в этот период, то амплитуда мышечного сокращения будет снижена.

Период возбуждения в скелетной мышце завершается следовой деполяризацией, продолжающейся от 20 до 40 мс.

В этот период возбудимость, а, следовательно, и сократимость повышена. Поэтому, если следующее раздражение будет приходиться на этот период, то амплитуда мышечного сокращения будет возрастать (тем больше, чем больше повышена возбудимость).

Дата добавления: 2016-06-24 ; просмотров: 4574 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Одиночное мышечное сокращение

При непосредственном раздражении мышцы (прямое раздражение) или опосредовано через иннервирующий ее двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы:

• фаза сокращения (фаза укорочения);

Возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами ПД. Амплитуда одиночного сокращения мышцы зависит от количества сократившихся миофибрилл, порог чувствительности которых различен. Так, пороговое раздражение вызывает сокращение лишь наиболее возбудимых мышечных волокон, амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения последовательно вовлекаются и менее возбудимые группы мышечных волокон, амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая при дальнейшем наращивании силы раздражения не увеличивается.

В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами (менее 0, 11 с), на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение получило название тетанического сокращения или тетануса. Различают два вида тетануса: зубчатый и гладкий.

Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Н.Е.Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.

Энергетика мышцы. Системы восстановления АТФ, коэффициент полезного действия и тепловой выход мышцы

Источником энергии мышечного сокращения служит энергия гидролитического расщепления АТФ с помощью фермента миозин-АТФ-фазы до АДФ и неорганического фосфата (3 молекулы АТФ на 1 «гребок»). Расщепление 1 моля АТФ обеспечивает около 48 кДж. 50-60% этой энергии превращается в тепло и лишь 40-50% идет на работу мышц, причем лишь 20-30 % превращается в механическую энергию, остальное идет на работу ионных насосов и окислительного восстановления АТФ.

Системы восстановления АТФ

Восстановление АТФ осуществляется сразу же после ее расщепления до АДФ. Этот процесс осуществляется при участии 3 энергетических систем.

1) фосфогенная система, где используется энергия креатинфосфата (система АТФ-КрФ). Эта система обладает наибольшей скоростью действия, мощностью, но незначительной емкостью, поэтому используется в самом начале работы или при работе максимальной мощности (но не более 5 с). Это анаэробный процесс, т.е. он протекает без участия кислорода.

2)система окислительного фосфорилирования разворачивается по мере удлинения времени работы (через 2-3 мин). Если интенсивность работы мышц не максимальна, то их потребности в кислороде удовлетворяются полностью. Поэтому работа может выполняться на протяжении многих часов. Необходимая для ресинтеза АТФ энергия поступает в результате окисления жиров и углеводов, причем чем больше интенсивность, тем меньше вклад жиров. Это аэробный процесс.

3) гликолитическая система, где восстановление АТФ идет за счет энергии анаэробного расщепления углеводов (гликогена, глюкозы) до молочной кислоты. Во время этой реакции скорость образования АТФ в 2-3 раза выше, а механическая работа в 2-3 раза больше, чем при длительной аэробной работе. Однако, емкость гликолитической системы в тысячи раз меньше, чем окислительной (хотя в 2,5 раза больше фосфогенной. Поэтому такая система может обеспечивать работу на время от 20 с до 1-2 мин. и заканчивается она значительным накоплением молочной кислоты.

Коэффициент полезного действия

Необходимо заметить, что и хемомеханическая реакция в системе актомиозиновых мостиков, и все последующие процессы идут с потерей энергии в форме теплоты. Коэффициент полезного действия (КПД) мышцыкак механи­ческой машины (здесь надо оговориться, что мышца не только механическая машина, но и основной обогреватель организма, поэтому ее тепловой выход не бесполезен) может быть вычислен по формуле:

где А – совершаемая работа, а Q- тепловой выход мышцы.

Тепловой выход мышцы

Тепловой выход мышцы (Q) сложен. Во-первых, существует выход теплоты при изометрическом напряжении мышцы, при задержке ее сокращения стопо­ром. Этот выход называют теплотой активации. Если на фоне этого состояния мышца с грузом освобождается от стопора и, сокращаясь, поднимает груз, то она выделяет дополнительную теплоту — теплоту укорочения, пропорциональную механической работе (эффект Фенна). По-видимому, пере­мещение нитей с подключением в работу все новых (заряженных энергией) мостиков способствует высвобождению дополнительной энергии (и механиче­ской, и тепловой).

В условиях свободного подъема груза теплота активации (соответстствующая фазе напряжения сухожилия) и теплота укорочения сливаются, образуя так называемое начальное теплообразование. После сокращения (одиночного или краткого тетануса) в мышце возникает задержанное теплообразование, которое связано с процессами, обеспечивающими ресинтез АТФ, оно длится секунды и минуты. Если рассчитывать КПД мышцы по начальному теплообра­зованию, то он составит примерно 50-60% (для оптимальных условий стиму­ляции и нагрузки). Если же вести расчет КПД исходя из видов теплопродук­ции, связанных с данной механической работой, то КПД составит примерно 20-30% (КПД мышц млекопитающих падает при адаптации к холоду, что способствует усилению теплопродукции в организме).

Источник

Читайте также:  Мышцы верхней челюсти человека

Крепкие мышцы — здоровое тело © 2021
Все права сохранены © 2020. Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению. Обязательно проконсультируйтесь с вашим лечащим врачом. Внимание! Материалы могут содержать информацию, предназначенную для пользователей старше 18 лет. 18+

Adblock
detector