Меню

Фазы теплообразования в мышцах

Теплообразование при сократительном процессе и энергия сокращения

Образование тепла в мышечной ткани при работе было открыто Гельмгольцем и В. Я. Данилевским во второй половине XIX в. В дальнейшем Хиллу с сотр. удалось создать высокочувствительные приборы, которые позволили зарегистрировать и измерить теплопродукцию мышц и нервов в покое и при возбуждении.

По своему происхождению и времени развития теплообразование было подразделено Хиллом на две основные фазы. Первая фаза приблизительно в 1000 раз короче второй и называется фазой начального теплообразования. Она начинается с момента возбуж­дения мышцы и продолжается в течение всего сокращения, включая фазу расслаб­ления.

В свою очередь начальное теплообразование может быть разделено на несколько частей: а) тепло активации; б) тепло укорочения; в) тепло расслабления.

Тепло активации освобождается непосредственно после нанесения раздражения, но до сколько-нибудь различимого сокращения мышечных волокон. Поэтому указанная порция тепла рассматривается как тепловой эффект тех химических процессов, которые переводят мышцу из невозбужденного состояния в активное. При тетаническом сокра­щении тепло активации выделяется в течение всего времени раздражения мышцы при каждом потенциале действия.

Тепло укорочения обусловлено самим сократительным процессом. Если путем силь­ного растяжения мышцы воспрепятствовать ее сокращению, эта порция тепла не выде­ляется.

Тепло расслабления связано с освобождением энергии в результате расслабления мышцы. Если мышца подняла груз во время сокращения, то по окончании его количество выделяемого тепла увеличивается.

Вторая фаза теплопродукции длится несколько минут после расслабления и носит название запаздывающего, или восстановительного, теплообразования.

Она связана с химическими процессами, обеспечивающими ресинтез АТФ. В опытах на мышцах, сокращающихся в отсутствие кислорода, Хилл показал, что в отличие от на­чального теплообразования, для которого кислород не нужен, 90 % восстановительного тепла образуется в результате окислительных процессов и лишь 10 % этого тепла обу­словлены анаэробными процессами обмена веществ. Тепло восстановления по своей ве­личине примерно равно количеству тепла, выделяемого мышцей во время сокращения. Это соответствие становится понятным, если учесть, что химические процессы, обуслов­ливающие восстановительное теплообразование, направлены на ресинтез АТФ, являю­щийся основным непосредственным источником энергии мышечного сокращения. Глав­ную роль в ресинтезе АТФ и восстановительном теплообразовании играют процессы гликолиза и окислительного фосфорилирования. Отравление мышцы монойодуксусной кислотой, прекращающей гликолитическое образование молочной и пировиноградной кислот, почти полностью выключает запаздывающее теплообразование и ресинтез АТФ даже в присутствии кислорода.

Читайте также:  Четырехглавая мышца бедра собак

РАБОТА И СИЛА МЫШЦ

Величина сокращения (степень укорочения) мышцы при данной силе раздражения (т. е. при данном числе активированных волокон) зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на боль­шую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократитель­ный эффект; при сильном растяжении сокращение мышцы ослабляется. Если в результа­те длительной работы развивается утомление мышцы, то величина ее сокращения сни­жается.

Для измерения силы мышцы определяют либо тот максимальный груз, который она в состоянии поднять, либо максимальное напряжение, которое она может развить в усло­виях изометрического сокращения. Эта сила может быть очень велика. Установлено, что собака мышцами челюсти может поднять груз, превышающий массу ее тела в 8,3 раза.

Одиночное мышечное волокно способно развить напряжение 100—200 мг. Учитывая, что общее количество мышечных волокон в теле человека приблизительно 15—30 млн., они могли бы развить напряжение в 20—30 т, если бы все одновременно тянули в одну сторону.

Примером мышц с продольным расположением волокон может служить m.sartorius, с косым — m.m.intercostales. Большинство мышц млекопитающих и человека перистого

строения. Перистая мышца имеет большое физиологическое сечение, а потому обладает большой силой.

Источник

Тепловые изменения в мышечном волокне.

Механизм мышечного сокращения и расслабления.

2. Возникновение потенциала действие.

3. Проведение возбуждения вдоль клеточной мембраны до Z мембраны, а далее вглубь волокна по трубочкам саркоплазматического ретикулума.

4. Освобождение Са из триад.

5. Диффузия Са к протофибриллам.

6. Взаимодействие Са с тропонином.

7. Конформационное изменение комплекса тропомиозин-тропонин.

8. Освобождение активных центров актина.

9. Присоединение актина к миозину.

10. В присутствии белка актомиозина распад АТФ с освобождением энергии.

11. Скольжение нитей актина относительно миозина.

12. Укорочение миофибриллы.

13. Активация кальциевого насоса.

15. Понижение концентрации свободных ионов Са в саркоплазме.

16. Разрушение актин-миозиновых комплексов.

Читайте также:  Сводит мышцы левой ноги причина

17. Обратное скольжение нитей актина относительно миозина.

18. Увеличение (восстановление) миофибриллы.

Процесс сокращения происходит в результате скольжения нитей актина относительно нитей миозина, который запускается накоплением Са, при этом образуются актино-миозиновые комплексы (мостики) и нити актина вдвигаются в промежутки между нитями миозина.

Одиночное мышечное сокращение и его характеристика.

Одиночное мышечное сокращение продолжается около 100 мс и развивается по фазам:

Латентный (скрытый) период продолжается до 3 мс и представляет время от начала действия раздражителя до начала видимого ответа (сокращения) мышцы.

Фаза сокращения продолжается 40-50 мс характеризуется укорочением длины мышечного волокна, что связано с увеличением концентрации Сa2+ в протофибриллярных пространствах и образованием актин-миозиновых связей.

Фаза расслабления продолжается 50-60 мс характеризуется увеличением (восстановлением) длины волокна. Возникает при снижении концентрации Ca2+ в протофибриллярных пространствах и ослаблением актин-миозиновых связей.

Сопоставить фазы потенциала действия с фазами изменения возбудимости и одиночного цикла

Источник

Теплообразование при мышечном сокращении

Скелетная мышца превращает химическую энергию в механическую работу с выделением тепла. А. Хиллом было установлено, что все теплообразование можно разделить на несколько компонентов:

1. Теплота активации — быстрое выделение тепла на ранних этапах мышечного сокращения, когда отсутствуют видимые признаки укорочения или развития напряжения. Теплообразование на этой стадии обусловлено выходом ионов Са2+ из триад и соединением их с тропонином.

2. Теплота укорочения — выделение тепла при совершении работы, если речь идет не об изометрическом режиме. При этом, чем больше совершается механической работы, тем больше выделяется тепла.

3. Теплота расслабления — выделение тепла упругими элементами мышцы при расслаблении. При этом выделение тепла не связано непосредственно с процессами метаболизма.

Одиночное мышечное сокращение, его фазы. Виды суммации мышечных сокращений (тетанус). Понятие оптимума и пессимума раздражения по Введенскому.

Одиночное сокращение, состоит из нескольких периодов.

Первый — латентный период представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков.

Второй — период укорочения.При свободном укорочении мышечного волокна говорят об изотоническом режиме сокращения, при котором напряжение не изменяется, а меняется только длина мышечного волокна. Если мышечное волокно закреплено с двух сторон и не может свободно укорачиваться, то говорят об изометрическом режиме сокращения. В этом случае длина мышечного волокна не изменяется, в то время как размеры саркомеров меняются за счет скольжения нитей актина и миозина относительно друг друга. В организме человека в изолированном виде изотонического или изометрического сокращения не происходит. Как правило, развитие напряжения сопровождается укорочением длины мышцы — ауксотонический режим сокращения.

Читайте также:  Эспандер для широчайших мышц спины

Третий — период расслабления, когда уменьшается концентрация ионов Са2+ и отсоединяются головки миозина от актиновых филаментов.

Изменение силы сокращения наблюдают при ритмической стимуляции скелетных мышц.

На рис. показаны варианты стимуляции мышцы двумя стимулами.

— Если второй стимул действует в период рефрактерности мышечного волокна, то он не вызовет повторного мышечного сокращения (рис. А).

-Если же второй стимул действует на мышцу после окончания периода расслабления, то вновь возникает одиночное мышечное сокращение (рис. Б).

— При нанесении второго стимула в период укорочения или развития мышечного напряжения происходит суммация двух следующих друг за другом сокращений, происходит неполная суммация единичных сокращений и развивается зубчатый тетанус (рис. В).

— При увеличении частоты стимуляции возможен вариант когда возникнет полная суммация мышечных сокращений и будет наблюдаться гладкий тетанус (рис. Г).

Тетанус — сильное и длительное сокращение мышцы в основе которого лежит повышение концентрации кальция внутри клетки, что позволяет осуществляться реакции взаимодействия актина и миозина и генерации мышечной силы поперечными мостиками достаточно длительное время.

При тетанусе происходит суммация мышечных сокращений, в то время как ПД мышечных волокон не суммируются.

Оптимум раздражения– частота стимуляции, при которой возникает тетанус с наибольшей амплитудой.

Пессимум раздражения – частота стимуляции, при которой происходит снижение амплитуды тетануса или полное расслабление мышцы.

Рис. Механизм суммации мышечных сокращений

Стрелками показаны моменты стимуляции

Периоды мышечного сокращения:

I. латентный

II. укорочения

III. расслабления

Б. Одиночные сокращения

В. Зубчатый тетанус (неполная суммация)

Г. Гладкий тетанус (полная суммация)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector