Меню

Фазы возбуждения скелетной мышцы

Изменения возбудимости скелетной мышцы во время одиночного цикла возбуждения.

Изменение возбудимости протекает по фазам, которые зависят от фаз потенциала действия

1. Фаза первичной экзальтации:Возникает в начале возбуждения, когда мембранный потенциал изменяется до критического уровня.Соответствует латентному периоду потенциала действия (периоду медленной деполяризации). Характеризуется незначительным повышением возбудимости

2. Фаза абсолютной рефрактерности: Совпадает с восходящей частью пикового потенциала, когда мембранный потенциал изменяется от критического уровня до «спайка». Соответствует периоду быстрой деполяризации. Характеризуется полной невозбудимостью мембраны (даже самый большой по силе раздражитель не вызывает возбуждение)

3. Фаза относительной рефрактерности:Совпадает с нисходящей частью пикового потенциала, когда мембранный потенциал изменяется от «спайка» к критическому уровню, оставаясь выше него. Соответствует периоду быстрой реполяризации. характеризуется пониженной возбудимостью (возбудимость постепенно увеличивается, но остается ниже, чем в состоянии покоя).В этот период может возникнуть новое возбуждение, но сила раздражителя должна превыышать пороговую величину

4. Фаза вторичной экзальтации (супернормальной возбудимости):Возникает в конце возбуждения, когда мембранный потенциал, минуя критический уровень, изменяется до величины потенциала покоя. Соответствует периоду следовой деполяризации. Характеризуется повышенной возбудимостью (мембрана может ответить новым возбуждением даже на действие подпорогового раздражителя)

5. Фаза субнормальной возбудимости:Возникает в конце возбуждения, когда изменение мембранного потенциала происходит ниже уровня потенциала покоя. Соответствует периоду следовой гиперполяризации. характеризуется пониженной возбудимостью

Источник

Возбудимость мышцы

Любая живая ткань обладает возбудимостью, т. е. свойством проявлять свою деятельность при раздражении. Возбудимость разных тканей различна, например нерв и мышца более возбудимы, чем железистая ткань. Возбудимость ткани тесно связана с ее физиологическим состоянием. Одна и та же ткань, находясь в разных функциональных состояниях, может иметь разную возбудимость. Любая возбудимая ткань приходит в деятельное состояние, когда в результате нанесенного раздражения в ней возникает возбуждение. Возбуждением, как было указано выше, называется сложный процесс, который возникает в возбудимой ткани под влиянием раздражений. Он заключается в основном в изменении хода процессов обмена веществ и вызывает характерную для возбудимой ткани деятельность. Если мышца или другая ткань не проявляет своей деятельности, она находится в состоянии относительного покоя. Относительным этот покой называется потому, что в тканях в это время протекают биохимические процессы, лежащие в основе сложных физиологических процессов, но они не достигают той степени интенсивности, которая необходима, чтобы проявилась деятельность ткани.

Однако именно эти процессы постоянно осуществляющегося обмена веществ обусловливают исходный тонус возбудимой ткани.

Возбудитель мышцы или нерва измеряется либо силой раздражающего индукционного тока, либо продолжительностью действия тока.

Порог силы раздражения

Не всякой силы раздражение может вызвать сокращение мышцы. Сила раздражения должна дойти до определенной величины, чтобы мышца ответила сокращением.

Для определения силы раздражения, которая может вызвать сокращение, приготовляют нервно-мышечный препарат, который закрепляют в миографе. Вторичную катушку индукционного аппарата отодвигают на столь далекое расстояние, что замыкание тока, т. е. раздражение нерва индукционным током, не вызывает сокращения. Такая сила раздражения называется подпороговой. Подпороговые раздражения хотя и не вызывают волны возбуждения, но приводят к ряду физических и химических изменений, которые недостаточно интенсивны для того, чтобы вызвать сокращение.

Постепенно приближая вторичную катушку к первичной, раздражают мышцу и, наконец, находят ту силу раздражения, при которой мышца отвечает первым наименьшим сокращением. Такая сила раздражения получила название порогового раздражения, измеряемого расстоянием между катушками индукционного аппарата. Допустим, что вторичная катушка в данном случае отстоит от первичной на 16 см, тогда отмечают, что порог раздражения равен 16 см.

Читайте также:  Тетаническое напряжение мышц это

Раздражения более сильные, чем пороговые, называются надпороговыми. Так, если постепенно сближать катушки, то сокращение мышцы также постепенно усиливается до тех пор, пока мышца не начнет сокращаться максимально. Дальнейшего увеличения высоты сокращения уже больше не наблюдается, даже если увеличить силу раздражения.

Хронаксия

Возбудимость мышцы или нерва может быть измерена не только определением минимальной силы раздражения (порог силы раздражения), но и установлением минимального времени, которое необходимо, чтобы ток напряжения, равного удвоенному порогу, вызывал возбуждение. Это минимальное время и будет хронаксия — порог времени раздражения.

Хронаксия обычно измеряется тысячными долями секунды. Например, хронаксия сердца лягушки составляет 0,085 секунды, а разгибателей мышц предплечья человека — 0,00016— 0,00032 секунды.

Хронаксия определяется при помощи специального прибора хронаксиметра. В настоящее время метод определения хронаксии применяется в клинике.

ИЗМЕНЕНИЯ ВОЗБУДИМОСТИ

Возбуждение, возникшее в нерве или мышце, распространяется по ткани.

Распространение волны возбуждения вызывает изменение некоторых свойств мышцы и нерва. Вслед за прохождением волны возбуждения изменяется возбудимость ткани: участок мышцы или нерва, где проходит волна возбуждения, на некоторое время становится невозбудимым. Не только пороговые, но и более сильные раздражения, нанесенные немедленно после раздражения, не могут вызвать возбуждения. Этот период невозбудимости, возникший при возбуждении, получил название рефрактерного периода.

Рефрактерный период в свою очередь делится на две фазы: абсолютной рефрактерности и относительной рефрактерности. Эти фазы отличаются одна от другой и имеют свои особенности.

В фазу абсолютной рефрактерности мышца или нерв невозбудимы. Раздражение любой силы, действующее в этот период на ткань, не вызовет никакого эффекта. Такая потеря возбудимости длится в нервах от 0,0004 до 0,002 секунды, в мышцах — от 0,002 до 0,003 секунды, после чего сменяется фазой относительной рефрактерности. В эту фазу в отличие от предыдущей возбудимость несколько восстанавливается. Раздражения пороговой силы еще не вызывают возбуждения, но зато раздражения большей силы, чем пороговое раздражение, уже способны вызвать возбуждение.

Фаза относительной рефрактерности протекает в нерве от 0,001 до 0,008 секунды. К концу фазы относительной рефрактерности возбудимость восстанавливается, но сейчас же сменяется новой фазой.

Вслед за относительной рефрактерностью наступает фаза повышенной возбудимости. Возбудимость в эту фазу настолько повышается, что возбуждение возникает при нанесении даже подпорогового раздражения. Эта фаза была открыта Н. Е. Введенским и получила название э к з а л ь т а ц и о н н о й (супернормальной) фазы. Этот период повышенной возбудимости более продолжительный, чем период рефрактерности, и длится примерно в 2—3 раза дольше, чем фаза рефрактерности.

Супернормальная фаза сменяется новой фазой пониженной возбудимости (субнормальной фазой) продолжительностью от десятых долей секунды до нескольких секунд. Только после этого мышца или нерв приходят в первоначальное нормальное состояние возбудимости. Таковы те изменения, которые возникают после возбуждения.

Статья на тему Возбудимость мышцы

Источник

Фазы возбуждения скелетной мышцы

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Читайте также:  Помощь при растяжении мышцы икры

Структурная организация скелетной мышцы

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ). ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей, мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

• Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

• Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

Рис. 2. Механизм мышечного сокращения.
Объяснение – в тексте.

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

Рис. 3. Механизм сопряжения возбуждения и сокращения.
Объяснение – в тексте.

• В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

• Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

• К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

• латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

• фаза укорочения (около 50 мс);

• фаза расслабления (около 50 мс).

Рис. 4. Характеристика одиночного мышечного сокращения. Происхождение зубчатого и гладкого тетануса.

Б – фазы и периоды иышечного сокращения,
Б – режимы мышечного сокращения, возникающие при разной частоте стимуляции мышцы.

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

• Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

• При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

• При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

• числом ДЕ, участвующих в сокращении;

• частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

• динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

• статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

• динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

• изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

• изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

• ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Физиологические свойства мышц

Таблица 7.1.Сравнительная характеристика скелетных и гладких мышц

Источник

Крепкие мышцы — здоровое тело © 2021
Все права сохранены © 2020. Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению. Обязательно проконсультируйтесь с вашим лечащим врачом. Внимание! Материалы могут содержать информацию, предназначенную для пользователей старше 18 лет. 18+

Adblock
detector