Физиологические свойства мышц
При непосредственном раздражении мышцы (прямое раздражение) или опосредовано через иннервирующий ее двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют три фазы:
• фаза сокращения (фаза укорочения);
В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение получило название тетанического сокращения или тетануса. Различают два вида тетануса: зубчатый и гладкий.
Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т. е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Однако в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т. к. эта сумма может быть то большей, то меньшей. Н. Е. Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.
Режимы мышечных сокращений. Различают изотонический, изометрический и смешанный режимы сокращения мышц.
При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.
При изометрическом сокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.
В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.
Рис. 6. Электронномикроскопическая картина миофибриллы (схематизировано)(А). Взаимное расположение толстых (миозиновых) и тонких (актиновых) нитей в расслабленной (Б) и сокращенной (В) миофибрилле.
В состоянии покоя концы толстых и тонких: нитей лишь незначительно перекрываются на уровне А-диска. В соответствии с теорией скользящих нитей при сокращении тонкие актиновые нити скользят вдоль толстых миозиновых нитей, двигаясь между ними к середине саркомера. Сами актиновые и миозиновые нити своей длины не изменяют.
Механизм скольжения нитей. Миозиновые нити имеют поперечные мостики (выступы) с головками, которые отходят от нити биполярно. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина. Молекулы тропомиозина в покое располагаются так, что предотвращают прикрепление поперечных мостиков миозина к актиновым нитям.
В состоянии покоя миозиновый мостик заряжен энергией (миозин фосфорилирован), но он не может соединиться с нитью актина, так как между ними находится система из нитей тропомиозина и глобул тропонина. При возбуждении ПД быстро распространяется по мембранам поперечной системы внутрь клетки и вызывает высвобождение ионов кальция из альфа-системы. С появлением ионов кальция в присутствии АТФ происходит изменение пространственного положения тропонина, в результате чего отодвигается нить тропомиозина и открываются участки актина, присоединяющие ми-озиновые головки. Соединение головки фосфорилированного миозина с актином приводит к изменению положения мостика (его «сгибанию»), в результате конформации этой части миозиновой молекулы, и перемещению нити актина на один шаг (на один «гребок») к середине саркомера. Затем происходит отсоединение мостика от актина. Ритмические прикрепления и отсоединения головок миозина позволяют «грести» или тянуть актиновую нить к середине саркомера.
При отсутствии повторного возбуждения ионы кальция закачиваются кальциевым насосом из протофибриллярного пространства в систему саркоплазматического ретикулума. Это приводит к снижению концентрации ионов кальция и отсоединению его от тропонина. Вследствие чего тропомиозин возвращается на прежнее место и снова блокирует активные центры актина. Вместе с тем, происходит фосфорилирование миозина за счет АТФ, который не только заряжает системы для дальнейшей работы, но и способствует временному разобщению нитей. Удлинение (расслабление) мышцы после ее сокращения является процессом пассивным, поскольку актиновые и миозиновые нити легко скользят в обратном направлении под влиянием сил упругости мышечных волокон и мышцы, а также силы растяжения мышц антагонистов.
Особенностью гладких мышц является их способность осуществлять относительно медленные движения и длительные тонические сокращения. Медленные, имеющие ритмический характер, сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц особенно хорошо выражены в сфинктерах полых органов, которые препятствуют выходу содержимого этих органов.
Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов.
Важным свойством гладких мышц является их пластичность, т. е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. Эти различия хорошо наблюдать при медленном растяжении гладкой и скелетной мышцы. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Благодаря высокой пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии. Так, например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления внутри его.
Сильное и резкое растяжение гладких мышц вызывает их сокращение. Последнее обусловлено нарастающей при растяжении деполяризацией клеток, обусловливающих автоматию гладкой мышцы. Сокращение, индуцируемое растяжением, играет важную роль в авторегуляции тонуса кровеносных сосудов, а также обеспечивает непроизвольное (автоматическое) опорожнение переполненного мочевого пузыря в тех случаях, когда нервная регуляция отсутствует в результате повреждения спинного мозга.
В гладких мышцах одиночное сокращение продолжается несколько секунд. Тетаническое сокращение возникает при низкой частоте слияния одиночных сокращений и низкой частоте сопровождающих его ПД.
Вегетативная нервная система и ее медиаторы оказывают на спонтанную активность пейсмекеров модулирующие влияния. При нанесении ацетил холина на препарат мышцы толстой кишки пейсмекерные клетки деполяризуются до околопорогового уровня и ча-стота ПД возрастает. Инициируемые ими сокращения сливаются, образуется почти гладкий тетанус. Чем выше частота ПД, тем сильнее суммированное сокращение. Нанесение на этот препарат норадрена-лина гиперполяризует мембрану и таким образом снижает частоту ПД и величину тонуса.
Возбуждение гладкомышечных клеток вызывает либо увеличение входа ионов кальция через мембрану клетки, либо высвобождение ионов кальция из внутриклеточных хранилищ. В результате повышения концентрации ионов кальция в саркоплазме активируются сократительные структуры. Так же как сердечная и скелетная мышца, гладкая мышца всегда пассивно расслабляется, если концентрация ионов кальция очень мала. Однако расслабление гладких мышц происходит более медленно, т. к. замедлено удаление ионов кальция.
Источник
22.11 Физические и физиологические свойства мышц. Типы мышечных сокращений. Сила и работа мышц. Закон силы.
Свойства скелетных мышц : 1) обеспечивают определенную позу тела человека;
2) перемещают тело в пространстве;
3) перемещают отдельные части тела относительно друг друга;
4) являются источником тепла, выполняя терморегуляционную функцию.
5) возбудимостью — способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала.
6) проводимостью — способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;
7) сократимостью — способностью укорачиваться или развивать напряжение при возбуждении;
8) эластичностью — способностью развивать напряжение при растягивании.
Свойства гладких мышц : 1) Статическая ( сохранительная, тоническая)
2) Низкая электропроводимость и высокая хемовозбудимость
3) Низкая лабильность
4) Низкая проводимость
5) Высокая пластичность
6) Слабые, практически неутомлямые
Типы мышечных сокращений. Различают изотонический, изометрический и смешанный режимы сокращения мышц.
При изотоническомсокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.(один фиксирован, другой висит свободно)
При изометрическомсокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.(оба конца мышцы фиксированы и она не может укоротиться)
Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.
Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой.Отношение максимальной силы мышцы к ее анатомическому поперечнику называетсяотносительной силой мышцы, измеряемой в кг/см2.
Работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное расстояние: А = FS.
При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе, при совершении движений — о динамической.
Сила сокращения и работа, совершаемая мышцей в единицу времени (мощность), не остаются постоянными при статической и динамической работе. В результате продолжительной деятельности работоспособность скелетной мускулатуры понижается. Это явление называется утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.
Закон Силы: в определенных пределах амплитуда сокращения скелетной мышцы тем больше, чем больше сила сокращения.
Источник
Физические свойства скелетных мышц
1. Растяжимость – способность мышцы изменять свою длину под действием растягивающей её силы.
2. Эластичность – способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение её к первоначальным размерам является полным. Эти свойства очень важны для осуществления нормальных функций скелетных мышц.
3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу – максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров её физиологического поперечного сечения.
4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъёма. Работа мышцы постепенно увеличивается с увеличением груза, но до определённого предела, после которого увеличение груза приводит к уменьшению работы, т.к. снижается высота подъёма груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).
Физиологические свойства мышц.
1. возбудимость – способность приходить в состояние возбуждения при действии раздражителей.
2. проводимость – способность проводить возбуждение.
3. сократимость – способность мышцы изменять свою длину или напряжение в ответ на действие раздражителя.
4. лабильность – лабильность мышцы равна 200-300 Гц.
При непосредственном раздражении мышцы (прямое раздражение) или опосредовано через иннервирующий её двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют 3 фазы:
1. латентный период – время от начала действия раздражителя до начала ответной реакции;
2. фаза сокращения (фаза укорочения);
3. фаза расслабления.
В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определёнными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения или тетануса. Различают 2 вида тетануса: зубчатый и гладкий (рис. 9.2).
Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления – зубчатый тетанус.
|
Рис. 9.2. Различные виды тетануса при повышении частоты раздражения
I – одиночные сокращения; II – зубчатый тетанус; IV – гладкий (сплошной) тетанус.
Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого, Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т.е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Но в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т.к. это сумма может быть то большей, то меньшей. Н.Е.Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.
Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде – оптимальным.
Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости. Тетанус при этом будет минимальным по амплитуде – пессимальным.
Режимы мышечных сокращений. Различают изотонический, изометрический и смешанный режимы сокращения мышц.
При изотоническом сокращении мышцы происходит изменение её длины, а напряжение остаётся постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.
При изометрическом сокращении длина мышечных волокон остаётся постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.
В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т.е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.
Механизм мышечного сокращения. Мышцы состоят из мышечных волокон, которые состоят из множества тонких нитей – миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл – нитей сократительных белков актина и миозина. Перегородки, называемые 2-пластинами, разделяют миофибриллы и, следовательно, мышечное волокно на участки – саркомеры. В саркомере наблюдают правильно чередующиеся поперечные светлые и тёмные полосы. Это поперечная исчерченность миофибрилл обусловлена определённым расположением нитей актина и миозина
Гладкие мышцы. Они, формирующие мышечные слои стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и др. полых внутренних полых органов, построены из веретенообразных одноядерных мышечных клеток.
Особенностью гладких мышц является их способность осуществлять относительно медленные движения и длительные тонические сокращения. Медленные, имеющие ритмический характер, сокращения гладких мышц желудка, кишечника, мочеточника и др. органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц особенно хорошо выражены в сфинктерах полых органов, которые препятствуют выходу содержимого этих органов.
Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов.
Важным свойством гладких мышц является их пластичность, т.е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. Эти различия хорошо наблюдать при медленном растяжении гладкой и скелетной мышцы. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остаётся растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Благодаря высокой пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии. Так, например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления внутри его.
Синапс – это специализированная структура, которая обеспечивает передачу возбуждение с одной возбудимой структуры на другую. Термин «синапс» означает «сведение», «соединение», «застёжка».
Классификация синапсов. Синапсы можно классифицировать по:
1. их местоположению и принадлежности соответствующим структурам:
2. знаку их действия – возбуждающие и тормозящие;
3. способу передачи сигналов – химические, электрические, смешанные;
4. медиатору, с помощью которого осуществляется передача
Строение синапса. Все синапсы имеют много общего, поэтому строение синапса и механизм передачи возбуждения в нём можно рассмотреть на примере нервно-мышечного синапса.
Синапс состоит из трёх основных элементов:
1. пресинаптической мембраны (в нервно-мышечном синапсе – это утолщённая концевая пластинка);
2. постсинаптической мембраны;
3. синаптической щели.
Механизм передачи возбуждения в химических возбуждающих синапсах. В синапсах с химической передачей возбуждение передаётся с помощью медиаторов (посредников). Т.о. медиаторы – это химические вещества, которые обеспечивают передачу возбуждения в синапсах.
Источник