Меню

Физические свойства мышц их особенности у гладких мышц

Основные физиологические особенности гладких мышц. Примеры, демонстрирующие эти свойства.

Физиологические свойства гладких мышц обусловлены особенностями их микроструктуры, иннервации, кровоснабжения, а также характером обменных процессов в миоцитах.

Возбуждение в гладкой мышце проводится очень медленно и передается от одного гладкого волокна к другому.

Важным свойством гладкой мышцы является ее большая пластичность, т.е. способность сохранять приданную растяжением длину без изменения напряжения. Благодаря пластичности гладких мышц стенок полых органов, например, мочевого пузыря, давление внутри него относительно мало изменяется при разной степени его наполнение. Гладкие мышцы способны длительное время находиться в тоническом состоянии, особенно это проявляется в сфинктерах желудка, желчного пузыря, матки и других органов. Многие гладкие мышцы обладают автоматизмом, т.е. способностью сокращаться под влиянием импульсов, возникающих в самих мышечных волокнах.

Простейшие одноклеточные организмы не имеют нервной системы, регуляция жизнедеятельности у них происходит только за счёт гуморальных механизмов. Нервная система, появившаяся у многоклеточных организмов, позволяет управлять системами организма более дифференцированно и с меньшими потерями времени на проведение командного сигнала (стимула).

I этап – образование диффузной (сетевидной) нервной системы. (Кишечнополостные, например, гидра). Все нейроны мультиполярные и объединяются за счёт своих отростков в единую сеть.

II этап – формирование узловой нервной системы. Специализация нейронов и их сближение с образованием нервных узлов – центров. Отростки этих нейронов образовали нервы, идущие к рабочим органам.

Образование радиальной (несимметричной) нервной системы (иглокожие, моллюски) и лестничной (симметричной) системы (например, плоские и круглые черви).

III этапом является образование трубчатой нервной системы. Такая ЦНС впервые возникла у хордовых (ланцетник) в виде метамерной нервной трубки с отходящими от неё сегментарными нервами ко всем сегментам туловища – туловищный мозг.

IV этап связан с образованием головного мозга. Обособление переднего отдела нервной трубки, что первоначально обусловлено развитием анализаторов, и приспособлением к разнообразным условиям обитания.

На первом этапе цефализации из переднего отдела нервной трубки формируются три первичных пузыря.

Развитие заднего пузыря (первичный задний, или ромбовидный мозг) происходит у низших рыб в связи с совершенствованием слухового и вестибулярного анализаторов. На этом этапе эволюции наиболее развит задний мозг, в нём же закладываются и центры управления растительной жизнью, контролирующие важнейшие системы жизнеобеспечения организма – дыхательную, пищеварительную и систему кровообращения.

Задний мозг по мере развития делится на собственно задний мозг, состоящий из моста и мозжечка, и продолговатый мозг, являющийся переходным между головным и спинным мозгом.

На втором этапе цефализации произошло развитие второго первичного пузыря под влиянием формирующегося здесь зрительного анализатора; этот этап также начался ещё у рыб.

На третьем этапе цефализации формировался передний мозг, который впервые появился у амфибий и рептилий. Это было связано с выходом животных из водной среды в воздушную и усиленным развитием обонятельного анализатора, необходимого для обнаружения находящихся на расстоянии добычи и хищников. В последующем передний мозг разделился на промежуточный и конечный мозг. Таламус (таламус — область головного мозга, отвечающая за перераспределение информации от органов чувств, за исключением обоняния, к коре головного мозга) интегрирует и координирует сенсорные функции организма, базальные ганглии конечного мозга стали отвечать за автоматизмы и инстинкты, а кора конечного мозга, сформировавшаяся изначально как часть обонятельного анализатора, со временем стала высшим интегративным центром, формирующим поведение на основе приобретённого опыта.

Читайте также:  Межреберная мышца относится к мышцам туловища относятся

Начиная с амфибий, происходит образование базальных ганглиев (структур полосатого тела) и так называемой старой коры.

С образованием этой системы мозг приобретает новые функции – формирование эмоций и способность к примитивному научению на основе положительного или отрицательного подкрепления действий. Эмоции и ассоциативное научение значительно усложнили поведение млекопитающих и расширили их адаптационные возможности.

Дальнейшее совершенствование сложных форм поведения связано с формированием новой коры. Нейроны новой коры впервые появляются у высших рептилий, однако, сильнее всего неокортекс развит у млекопитающих. У высших млекопитающих неокортекс покрывает увеличившиеся большие полушария, оттесняя вниз и медиально структуры древней и старой коры. Неокортекс становится центром обучения, памяти и интеллекта, может контролировать функции других отделов мозга, влияя на реализацию эмоциональных и инстинктивных форм поведения.

Структурно функциональной единицей нервной системы является нервная клетка, или нейрон. Всю нервную систему можно представить как взаимосвязанную и взаимодействующую сеть из нескольких триллионов нервных клеток.

По своей функциональной значимости в составе рефлекторной дуги различают три вида нейронов:

Рецепторные (чувствительные, афферентные), имеющие чувствительные нервные окончания, которые способны воспринимать раздражения из внешней или внутренней среды;

Эффекторные (эфферентные), окончания аксонов которых передают нервный сигнал на рабочий орган;

Ассоциативные (вставочные, центральные), являющиеся промежуточными в составе рефлекторной дуги и передающие информацию с чувствительного нейрона на эффекторные.

Синапс холинергический— медиатором в нем является ацетилхолин. Они делятся на синапсы н-холинергические и м-холинергические.

В м-холинергическомсинапсе постсинаптическая мембрана чувствительна к мускарину. Эти синапсы образуют нейроорганные синапсы парасимпатической системы и синапсы ЦНС.

В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

Синапс нервно-мышечный— синапс между аксоном мотонейрона и мышечным волокном.

Этапы синаптической передачи
Синаптическая передача (также называемая нейропередача) — электрические движения в синапсах, вызванные распространением нервных импульсов. Каждая нервная клетка получает нейромедиатор из пресинаптического нейрона или из терминального окончания или из постсинаптического нейрона или дендрида вторичного нейрона и посылает его обратно нескольким нейронам, которые повторяют данный процесс, таким образом, распространяя волну импульсов до тех пор, пока импульс не достигнет определенного органа или специфической группы нейронов.

1. Молекулы нейромедиатора поступают в мембранные синаптические пузырьки, располагающиеся в пресинаптической терминали и концентрирующиеся в активных зонах пресинаптической мембраны.

2. Приходящий по аксону ПД(потенциал действия) деполяризует пресинаптическую мембрану.

3. Вследствие деполяризации открываются потенциалозависимые Са2+‑каналы, и Са2+ поступает в терминаль.

4. Увеличение внутриклеточного [Са2+] запускает слияние синаптических пузырьков с пресинаптической мембраной и выброс нейромедиатора в синаптическую щель.

5. Кванты нейромедиатора, поступившие в синаптическую щель, диффундируют в ней. Часть молекул нейромедиатора связывается со специфичными для них рецепторами постсинаптической мембраны.

6. Связавшие нейромедиатор рецепторы активированы, что приводит к изменению поляризации постсинаптической мембраны либо прямо (поступление ионов через ионотропные рецепторы) либо опосредованно — активация ионных каналов через систему G‑белка (метаботропные рецепторы).

7. Инактивация нейромедиаторов происходит либо путём их ферментной деградации, либо молекулы нейромедиатора захватываются клетками.

Источник

Физические свойства скелетных мышц

1. Растяжимость – способность мышцы изменять свою длину под действием растягивающей её силы.

Читайте также:  Что можно сказать о мышцах груди

2. Эластичность – способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение её к первоначальным размерам является полным. Эти свойства очень важны для осуществления нормальных функций скелетных мышц.

3. Сила мышцы. Она определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу – максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров её физиологического поперечного сечения.

4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъёма. Работа мышцы постепенно увеличивается с увеличением груза, но до определённого предела, после которого увеличение груза приводит к уменьшению работы, т.к. снижается высота подъёма груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).

Физиологические свойства мышц.

1. возбудимость – способность приходить в состояние возбуждения при действии раздражителей.

2. проводимость – способность проводить возбуждение.

3. сократимость – способность мышцы изменять свою длину или напряжение в ответ на действие раздражителя.

4. лабильность – лабильность мышцы равна 200-300 Гц.

При непосредственном раздражении мышцы (прямое раздражение) или опосредовано через иннервирующий её двигательный нерв (непрямое раздражение) одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют 3 фазы:

1. латентный период – время от начала действия раздражителя до начала ответной реакции;

2. фаза сокращения (фаза укорочения);

3. фаза расслабления.

В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определёнными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения или тетануса. Различают 2 вида тетануса: зубчатый и гладкий (рис. 9.2).

Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления – зубчатый тетанус.

Рис. 9.2. Различные виды тетануса при повышении частоты раздражения

I – одиночные сокращения; II – зубчатый тетанус; IV – гладкий (сплошной) тетанус.

Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого, Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т.е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Но в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т.к. это сумма может быть то большей, то меньшей. Н.Е.Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде – оптимальным.

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости. Тетанус при этом будет минимальным по амплитуде – пессимальным.

Режимы мышечных сокращений. Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение её длины, а напряжение остаётся постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

Читайте также:  Питание для мышц малютка

При изометрическом сокращении длина мышечных волокон остаётся постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т.е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.

Механизм мышечного сокращения. Мышцы состоят из мышечных волокон, которые состоят из множества тонких нитей – миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл – нитей сократительных белков актина и миозина. Перегородки, называемые 2-пластинами, разделяют миофибриллы и, следовательно, мышечное волокно на участки – саркомеры. В саркомере наблюдают правильно чередующиеся поперечные светлые и тёмные полосы. Это поперечная исчерченность миофибрилл обусловлена определённым расположением нитей актина и миозина

Гладкие мышцы. Они, формирующие мышечные слои стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и др. полых внутренних полых органов, построены из веретенообразных одноядерных мышечных клеток.

Особенностью гладких мышц является их способность осуществлять относительно медленные движения и длительные тонические сокращения. Медленные, имеющие ритмический характер, сокращения гладких мышц желудка, кишечника, мочеточника и др. органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц особенно хорошо выражены в сфинктерах полых органов, которые препятствуют выходу содержимого этих органов.

Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов.

Важным свойством гладких мышц является их пластичность, т.е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. Эти различия хорошо наблюдать при медленном растяжении гладкой и скелетной мышцы. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остаётся растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Благодаря высокой пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии. Так, например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления внутри его.

Синапс – это специализированная структура, которая обеспечивает передачу возбуждение с одной возбудимой структуры на другую. Термин «синапс» означает «сведение», «соединение», «застёжка».

Классификация синапсов. Синапсы можно классифицировать по:

1. их местоположению и принадлежности соответствующим структурам:

2. знаку их действия – возбуждающие и тормозящие;

3. способу передачи сигналов – химические, электрические, смешанные;

4. медиатору, с помощью которого осуществляется передача

Строение синапса. Все синапсы имеют много общего, поэтому строение синапса и механизм передачи возбуждения в нём можно рассмотреть на примере нервно-мышечного синапса.

Синапс состоит из трёх основных элементов:

1. пресинаптической мембраны (в нервно-мышечном синапсе – это утолщённая концевая пластинка);

2. постсинаптической мембраны;

3. синаптической щели.

Механизм передачи возбуждения в химических возбуждающих синапсах. В синапсах с химической передачей возбуждение передаётся с помощью медиаторов (посредников). Т.о. медиаторы – это химические вещества, которые обеспечивают передачу возбуждения в синапсах.

Источник

Adblock
detector