Меню

Физиологические особенности свойств скелетных мышц

Классификация мышц. Физиологические особенности скелетных и гладких мышц

1. Виды мышц. Функции мышц

Различают: 1) поперечно-полосатые мышцы (склетная, сердечная); 2) гладкие

Поперечно-полосатые (скелетные) мышцывыполняют ряд функций:

а) двигательную (обеспечивает сохранение определенной позы и перемещение те-

ла в пространстве); б) рецепторную; в) депо воды, солей, гликогена, фосфатов, кислоро-

да; г) принимают участие в эмоциональных реакциях.

Попеременное сокращение отделов сердцалежит в основе его насосной функции

(главный фактор, обеспечивающий непрерывное движение крови).

Гладкие мышцы внутренних полых органовобеспечивают их форму, двига-

тельную активность, степень наполнения. Гладкие мышцы бронхов и сосудов регулиру-

ют величину их просвета (диаметра).

2. Понятие о нейро-моторной единице. Виды нейро-моторных единиц

Нейро-моторная единица – это двигательный нейрон и иннервируемая им группа

мышечных волокон. Они делятся по характеру электрического ответа на: а) фазные (воз-

никает распространяющийся потенциал действия); б) тонические (возникает местное

Фазные нейро-моторные единицы делятся на быстрые и медленные. В основу де-

а) скорость сократительного акта;

б) скорость распространения возбуждения;

в) длительность потенциала действия;

г) особенности обменных процессов.

3. Физиологические свойства скелетных мышц

Физиологическими свойствами скелетных мышц являются: возбудимость, прово-

димость, рефрактерность, лабильность, сократимость. Сократимость (специфическое

свойство мышечной ткани) – это способность мышечного волокна изменять свою длину

и степень напряжения в ответ на действие порогового раздражителя. Изолированное

мышечное волокно может сокращаться в двух режимах:

а) изотоническом (изменяется длина волокна); б) изометрическом (изменяется

степень напряжения волокна).

3. Механизм мышечного сокращения

Сокращение мышечного волокна обусловлено скольжением нитей сократительно-

го белка актина относительно миозина. Нити актина как бы втягиваются в промежутки

между нитями миозина. Длина нитей сократительных белков при этом не меняется.

Пусковым механизмом мышечного сокращения является потенциал действия. По-

тенциал действия распространяется по проводящей системе мышечного волокна с помо-

щью круговых токов. В результате этого ионы кальция из цистерн саркоплазматического

ретикулума проникают в саркоплазму.

Ионы кальция повышают АТФ-азную активность миозина, необходим для освобо-

ждения активных центров сократительных белков и взаимодействия между ними. В ре-

зультате этого происходит гидролиз АТФ, выделяется энергия и нити актина скользят

относительно нитей миозина.

Расслабление мышечного волокна также активный процесс, который осуществля-

обходимый для мышечного сокращения.

4. Мышечный тонус

Мышечный тонус – умеренная степень напряжения мышцы. Он обусловлен:

а) поступлением редких нервных импульсов от мотонейронов спинного мозга к скелет-

ным мышцам; б) попеременным включением в работу различных групп нейро-моторных

единиц; в) длительным периодом расслабления мышечных волокон тонических нейро-

Источник

Физиологические свойства скелетной мышцы. Сила и работа мышц.

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

1) обеспечивают определенную позу тела человека;

2) перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

Свойства скелетной мышцы:

1) Возбудимость — способность отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т.е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты — вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

2) Низкая проводимость (10-13 м/с) — способность проводить потенциал действия вдоль и вглубь мышечного волокна по Т-системе;

3) Сократимость — способность укорачиваться или развивать напряжение при возбуждении;

Читайте также:  Упражнение на грудные мышцы в тренажерном зале для начинающих

4) Эластичность — способность развивать напряжение при растягивании.

5) Рефрактерность – отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Занимает по времени больший отрезок, чем у нервного волокна.

6) Лабильность – функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Работа мышц. Работа мышц внешне выражается либо в фиксации части тела, либо в движении. В первом случае говорят о так называемой статической работе, а во втором – о динамической работе.

Статическая работа мышц есть следствие равенства моментов сил и называется еще удерживающей работой. При такой работе форма мышцы, ее размеры, возбуждение и напряжение относительно постоянны.

Динамическая работа мышц сопровождается движением и есть следствие разности моментов сил. В зависимости от того, какой момент окажется большим, различают два вида динамической работы мышц: преодолевающую и уступающую. Превалирование момента силы мышцы или группы мышц приводит к преодолевающей работе, а уменьшение момента силы мышцы – к уступающей работе.

Различают еще баллистическую работу мышц, которая является разновидностью преодолевающей работы: мышца совершает быстрое сокращение и последующее расслабление, после которого костное звено продолжает движение по инерции.

(10) Виды и режимы сокращения скелетной мышцы. Одиночное мышечное сокращение, его фазы. Тетанус и его виды. Оптимум и пессимум раздражения.

У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение (тетанус).

Фазы одиночного мышечного сокращения:

1. Латентный период. Представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.

2. Период укорочения, или развития напряжения.

Читайте также:  Массаж при повышенный тонус мышц у грудничков

3. Период расслабления, когда уменьшается концентрация ионов Са2+ и головки миозина отсоединяются от актиновых филаментов.

При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением, или тетанусом.

Тетанус может быть зубчатым (при частоте раздражений 20-40 Гц) или гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается.

При изотоническом режиме мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом укорачивается (меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза).

Оптимум – уровень силы или частоты раздражений, при котором осуществляется максимальная деятельность органа или ткани. Явление О. описано Н. Введенским, который на нервно-мышечном препарате лягушки установил, что нарастание до некоторого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы — тетанус. О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением.

Пессимум — угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений. Это явление было описано Н. Введенским. Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление тетануса, вызываемое постепенным возрастанием частоты или силы раздражений, при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории парабиоза. Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки — 0,02—0,03 сек). Это время определяет функциональные возможности нервных окончаний — их лабильность. Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение — парабиоз, блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение.

Источник

Физические и физиологические свойства скелетных и гладких мышц.

Физические Свойства скелетных мышц лежат в основе их способности возвращаться к исходному положению после сокращения или растяжения. К ним относят растяжимость – способность мышцы изменять длину под действием растягивающей ее силы, и эластичность- способность мышцы возвращаться к исходной длине после прекращения действия растягивающей силы.Физ. Св-ва мышц обеспечивают возможность движений, при которых одни мышцы сокращаются, а мышцы-антагонисты растягиваются.

Читайте также:  Упражнения для боковых мышц живота мужчине

Физиологические св-ва обеспечивают их функционирование. К ним относят:

1) возбудимостью — способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала.

2) проводимостью — способностью проводить потенциал дейст­вия вдоль и в глубь мышечного волокна по Т-системе;

3) сократимостью — способностью укорачиваться или разви­вать напряжение при возбуждении;

4) эластичностью — способностью развивать напряжение при растягивании.

Функции и свойства гладких мышц

— Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности

— Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение.

— Пластичность. Пластичность гладкой мускулатуры способствует нормально­му функционированию внутренних полых органов.

Характеристика видов и режимов сокращения.

Одиночное сокращение. Воздействие на мышцу одиночного стимула вызывает одиночное сокращение, в котором выделяют три фазы:

1)латентного периода – от начала действия раздражителя до появления видимого укорочения;

2) сокращения (укорочения) – от начала сокращения до его максимума;

3) расслабления – от максимума сокращения до восстановления начальной длины.

Тетаническое сокращение – это длительное укорочение мышцы, возникающее под действием ритмического раздражения. В его основе лежит суммация одиночных сокращений. При тетаническом сокращении амплитуда больше, чем при одиночном сокращении, так как повторные потенциалы действия возникают прежде, чем саркоплазматический ретикулум сможет удалить ранее высвобожденный кальций, поэтому уровень последнего в гиалоплазме повышается, активное состояние продлевается, увеличивается количество работающих мостиков и, как результат, усиливается сила сокращения. Для возникновения тетануса необходимо, чтобы интервал между стимулами был больше рефрактерного периода, но короче всей длительности сократительного ответа.

В зависимости от условий (величины) нагрузки), при которых происходит мышечное сокращение, различают три его основных режима:

1. Изотонический режим – это сокращение мышцы, при котором её волокна укорачиваются, но напряжение остается постоянным. В реальных условиях чисто изотоническое сокращение отсутствует.

2. Изометрический режим – сокращение мышцы, при котором её длина не изменяется, но развиваемое ею напряжение возрастает. Например, поднятие груза, который больше силы мышцы.

3. Смешанный режим- в целом организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, то есть, происходит одновременное изменение и длины, и напряжения мышцы. Такой режим называют ауксотоническим, если преобладает напряжение мыщцы, или ауксометрическим, если преобладает укорочение.

Гладкий и зубчатый тетанус. Оптимум и пессимум. Особенности мышц челюстно-лицевой области.

Тетаническое сокращения имеет два вида: зубчатый тетанус и гладкий. Если повторить раздражение в фазу расслабления, то получится зубчатый тетанус, если же в фазу укорочения – то гладкий. При некоторой достаточно высокой частоте раздражения нерва амплитуда гладкого тетануса становится наибольшей. Такой гладкий тетанус называется оптимумом. Для развития оптимума необходимо, чтобы повторные раздражители поступали к мышце после завершения периода рефрактерности, вызванного предыдущим раздражителем. Если повышать дальше частоту раздражения, то наступает состояние, которое называется пессимумом Введенского – формируется блок проведения возбуждения в нервно-мышечном синапсе и мышца вместо того, чтобы продолжать возбуждаться, расслабляется, сколько бы мы её не раздражали. В естественных условиях ввиду асинхронности работы мотонейронов сокращение мышцы напоминает гладкий тетанус.

Электромиотонометром измеряют: 1. Мышечный тонус левой и правой собственно жевательных мышц при относительном физиологическом покое нижней челюсти. 2. Твердость сокращенных мышц при максимальном сжатии зубных рядов, что дает возможность судить о силе возбудительного процесса. 3. Степень возбуждения мышц оценивали по разности (А) показателей твердости сокращений мышцы при максимальном сжатии зубных рядов и твердости этой же мышцы при относительном физиологическом покое НЧ.

Дата добавления: 2018-11-24 ; просмотров: 584 ;

Источник

Adblock
detector