Меню

Физиология животных силы мышц

Физиология животных силы мышц

ФИЗИОЛОГИЯ МЫШЦ

Мышцы выполняют в организме животных двигательные функции. Поперечнополосатые скелетные мышцы осуществляют перемещение тела или отдельных его частей в пространстве, с их помощью происходит акт вдоха и выдоха. Поперечнополосатая мускулатура сердца обеспечивает ритмическое перекачивание в артерии крови, притекающей к нему из вен. Гладкая мускулатура внутренних органов, кровеносных сосудов поддерживает длительные тонические сокращения сфинктеров внутренних органов, а также тонус стенок кровеносных сосудов. Ритмические сокращения гладких мышц стенок полых органов (желудка, кишок, протоков пищеварительных желез и др.) обеспечивают передвижение и выделение содержимого этих полых органов.

Физиологические свойства мышц. Основными свойствами мышц являются возбудимость, проводимость и сократимость.

Специфической деятельностью мышечной ткани является ее сокращение при возбуждении. Различают изотонические и изометрические сокращения мышц. При изотоническом сокращении, наблюдаемом, например, при поднятии мышцей груза, волокна ее укорачиваются, но напряжение остается постоянным. Изометрическим называется такое сокращение, при котором мышца не укорачивается, например, если оба конца ее неподвижно закреплены, но зато напряжение мышечных волокон возрастает.

Источником энергии при работе мышц являются химические процессы, которые совершаются в две фазы: анаэробную и аэробную. В анаэробную фазу выделение энергии происходит при распаде аденозинтрифосфорной кислоты (АТФ). Во время аэробной фазы происходит окисление молочной кислоты до углекислого газа и воды также с выделением энергии. При сокращении мышц большая часть энергии превращается в тепловую и только 25- 30% ее преобразуется в механическую.

В настоящее время механизм мышечного сокращения объясняют скольжением протофибрилл. В состоянии покоя мышцы прото-фибриллы расположены в миофибрилле таким образом, что концы тонких нитей актина лежат частично в промежутке между миозиновыми нитями и соединены друг с другом поперечными мостиками (рис. 46,Л). При сокращении мышцы тонкие нити актина сдвигаются в промежутки между толстыми нитями миозина, что сопровождается укорочением миофибрилл и мышцы (рис. 46,Б).

Сила и работа мышц. Силу мышц определяют по максимальному напряжению, которое она может развить в условиях изометрического сокращения или при поднятии максимального груза. Для измерения силы мышцы определяют тот максимальный груз, который она в состоянии поднять.

Поднимая груз, мышца выполняет механическую работу, которая измеряется произведением массы груза на высоту его подъема и выражается в килограммометрах. Мышца выполняет наибольшую работу при средних нагрузках.

Временное понижение работоспособности мышцы, наступающее в результате работы и исчезающее после отдыха, называется утомлением. Последнее представляет собой сложный физиологический процесс, связанный, прежде всего, с утомлением нервных центров. Определенную роль в развитии утомления играет накопление в работающей мышце продуктов обмена (молочная кислота и др.) и постепенное истощение энергетических запасов.

В покое, вне работы, мышцы полностью не расслаблены, а сохраняют некоторое напряжение, называемое тонусом. Внешним выражением тонуса является определенная степень упругости мышц. Тонус мышц обусловлен непрерывно поступающими нервными импульсами из мотонейронов спинного мозга. Тонус скелетных мышц играет важную роль для поддержания определенного положения тела в пространстве, сохранения равновесия и упругости мышц.

Особенности гладкой мускулатуры. Гладкая мускулатура находится во внутренних органах, в сосудах и коже. В отличие от поперечнополосатых они сокращаются медленно. Скрытый период их сокращения в 300 раз превышает таковой скелетной мускулатуры. Возбуждение в гладкой мышце проводится очень медленно (от 1 см/с в кишечнике до 18 см/с в мочеточнике) и передается от одного гладкого волокна к другому.

Важным свойством гладкой мышцы является ее большая пластичность, т. е. способность сохранять приданную растяжением длину без изменения напряжения. Благодаря пластичности гладких мышц стенок полых органов, например мочевого пузыря, давление внутри него относительно мало изменяется при разной сты пени его наполнения. Гладкие мышцы способны длительное время находиться в тоническом состоянии, особенно это проявляется в сфинктерах желудка, желчного пузыря, матки и других органов. Многие гладкие мышцы обладают автоматизмом, т. е. способностью сокращаться под влиянием импульсов, возникающих в самих мышечных волокнах.

Гладкие мышцы иннервируются парасимпатическими и симпа- тическими нервами.

Источник

Физиологические свойства скелетной мышцы. Сила и работа мышц.

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

1) обеспечивают определенную позу тела человека;

2) перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

Свойства скелетной мышцы:

1) Возбудимость — способность отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т.е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты — вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

2) Низкая проводимость (10-13 м/с) — способность проводить потенциал действия вдоль и вглубь мышечного волокна по Т-системе;

Читайте также:  Препараты снимающие спазм мышц спины

3) Сократимость — способность укорачиваться или развивать напряжение при возбуждении;

4) Эластичность — способность развивать напряжение при растягивании.

5) Рефрактерность – отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Занимает по времени больший отрезок, чем у нервного волокна.

6) Лабильность – функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Работа мышц. Работа мышц внешне выражается либо в фиксации части тела, либо в движении. В первом случае говорят о так называемой статической работе, а во втором – о динамической работе.

Статическая работа мышц есть следствие равенства моментов сил и называется еще удерживающей работой. При такой работе форма мышцы, ее размеры, возбуждение и напряжение относительно постоянны.

Динамическая работа мышц сопровождается движением и есть следствие разности моментов сил. В зависимости от того, какой момент окажется большим, различают два вида динамической работы мышц: преодолевающую и уступающую. Превалирование момента силы мышцы или группы мышц приводит к преодолевающей работе, а уменьшение момента силы мышцы – к уступающей работе.

Различают еще баллистическую работу мышц, которая является разновидностью преодолевающей работы: мышца совершает быстрое сокращение и последующее расслабление, после которого костное звено продолжает движение по инерции.

(10) Виды и режимы сокращения скелетной мышцы. Одиночное мышечное сокращение, его фазы. Тетанус и его виды. Оптимум и пессимум раздражения.

У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение (тетанус).

Фазы одиночного мышечного сокращения:

1. Латентный период. Представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.

2. Период укорочения, или развития напряжения.

3. Период расслабления, когда уменьшается концентрация ионов Са2+ и головки миозина отсоединяются от актиновых филаментов.

При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением, или тетанусом.

Тетанус может быть зубчатым (при частоте раздражений 20-40 Гц) или гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

Читайте также:  Динамическая работа мышц человека это

Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается.

При изотоническом режиме мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом укорачивается (меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза).

Оптимум – уровень силы или частоты раздражений, при котором осуществляется максимальная деятельность органа или ткани. Явление О. описано Н. Введенским, который на нервно-мышечном препарате лягушки установил, что нарастание до некоторого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы — тетанус. О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением.

Пессимум — угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений. Это явление было описано Н. Введенским. Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление тетануса, вызываемое постепенным возрастанием частоты или силы раздражений, при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории парабиоза. Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки — 0,02—0,03 сек). Это время определяет функциональные возможности нервных окончаний — их лабильность. Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение — парабиоз, блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение.

Источник

Лекция 6. Физиология мышц

Классификация мышц.

Скорость передвижения животных, возможность сохранять позу, осуществлять гомеостатическое регулирование кровообращения, дыхания и других процессов зависит от мышечной системы.

Все мышцы организма являются эффекторами и служат объектом иннервации.

Все мышцы делят на скелетные, (поперечнополосатые, исчерченные) и гладкие.

Поперечнополосатые мышцы формируют двигательные аппараты скелета, глазодвигательный, жевательный и др. аппараты. К этой же группе относится сердечная мышца. Скелетные мышцы подвержены волевому контролю, управление их происходит соматической нервной системой. Сердечная мышца управляется автономной нервной системой, иннервирована симпатическими и парасимпатическими нервными волокнами, и не подлежит произвольному контролю.

Гладкие мышцы внутренних органов желудка, кишечника, сосудов, обладают автоматизмом в работе, иннервированы автономной нервной системой и не могут управляться произвольно.

Поперечнополосатые мышцы скелета позвоночных животных состоят из множества отдельных волокон, которые расположены в общей соединительнотканной оболочке и крепятся к сухожилиям, связанным со скелетом. Имеются мышцы параллельно-волокнистого и перистого типа строения. Сила мышцы пропорциональна площади физиологического поперечного сечения.

Каждое волокно скелетной мышцы – это многоядерное клеточное образование, симпласт, сложенный объединением нескольких миобластов. Диаметр симпластного мышечного волокна не превышает 100 мкм, длина составляет 2-3 см.

Основной структурный элемент мышечного волокна – миофибриллы. Миофибриллы образуют структуру с чередованием светлых и темных дисков, пространственно совпадающих у многих волокон в мышце, что и дало основание для термина исчерченные.

Актин, белок с массой 46000, образует одну закрученную цепь, состоящую из двух спиралей. Различают G-актин, глобулярный, и F-актин, составленный из отдельных глобул. По массе занимает 21% мышцы.

Тропомиозин (нить) и тропонин (глобула), выполняют регуляторную роль, без кальция препятствуют сокращению, составляют 15% массы мышцы.

Миозиновые и актиновые нити составляют основу сократительного механизма. Кроме нитей, в мышечном волокне имеется тубулярная система, или система канальцев. Образована впячиваниями наружной мембраны (Т-канальцы) и саркоплазматическим ретикулумом – сетью продольно ориентированных каналов и цистерн между миофибриллами.

Поперечнополосатые мышцы способны сокращаться в двух режимах – изотоническом (постоянная тяга) и изометрическом (постоянная длина), хотя эти понятия по механизму перекрываются. Ауксотонический режим более часто встречается, при сокращении меняется и тяга, и геометрия мышцы.

Исчерченные мышцы обладают широким диапазоном скоростей сокращения, поэтому их можно делить на быстрые (фазические) и медленные (тонические).

Крикотиреоидная мышца летучей мыши, 200 сокр/с, сгибатели крыльев колибри 45 сокр/с, у зяблика 25 сокр/с. Глазодвигательные мышцы человека при саккадах сокращаются за 5-6 мс. Мышцы кузнечиков способны давать 500 сокр/с.

Скорость сокращения мышц зависит от их биохимических свойств и иннервации. У позвоночных мышцы бывают богатыми миоглобином (депо кислорода) и белыми. Красные миоглобиновые мышцы сокращаются медленно и не так скоро утомляются. По набору ферментов белые мышцы приспособлены к анаэробному гликолизу, а красные к окислительному фосфорилированию. Для красных мышц характерен запас липидов, много крупных митохондрий, высокая активность фосфорилазы, цитохромоксидазы, сукцинатдегидрогеназы. Для белых быстрых мышц характерно малое число митохондрий, много гликогена, высокая активность мышечной лактатдегидрогеназы. Сердечная мышца относится к красному типу, содержит мало гликогена, но много ферментов аэробного обмена.

Читайте также:  Упражнения для укрепления мышц спины при сутулости видео

В любых мышцах имеются быстрые и медленные волокна.

Как правило, быстрые мышечные волокна иннервированы более толстыми нервными волокнами, они имеют более высокий потенциал покоя. У медленных мышечных волокон обнаруживается большая емкость, и высокое удельное сопротивление мембраны, что дает большую постоянную времени. Тонические медленные мышцы получают много двигательных нервных пресинаптических окончаний, поэтому возбуждение обеспечивается нервным механизмом.

Медленные волокна сокращаются градуально, продолжительно м с меньшим утомлением. Нервный импульс и последующее высвобождение АХ в синапсе запускает процесс сокращения, ПКП совсем не обязательно приводит к ПД.

Быстрые мышцы сокращаются чаще после генерации ПД в мышечной мембране.

Иннервация поперечнополосатых мышц осуществляется мотонейронами, локализованными в вентральных рогах спинного мозга. Один нейрон коллатералями своего аксона иннервирует несколько мышечных волокон. Комплекс, включающий один мотонейрон и иннервируемые им мышечные волокна, носит название моторной или двигательной единицы. В одну мышцу объединены многие двигательные единицы. Плотность иннервации отражает количество нервных волокон, приходящихся на одно мышечное волокно. Плотность иннервации велика в мышцах пальцев, языка, глаз, в тех мышцах, которые выполняют «тонкие» движения.

Одиночный тип иннервации мышечных волокон бывает в быстрых мышцах, аксон следует от крупного мотонейрона. Множественный тип иннервации мышечных волокон характерен для медленных, тонических мышц. На одном мышечном волокне расположены синапсы, образованные несколькими малыми мотонейронами. ПКП от разных синапсов суммируются и обеспечивают градуальную деполяризацию.

Но механизм генерации потенциала концевой пластинки и потенциала действия сходен с тем, который реализуется и в других возбудимых клетках. Большая емкость мембраны обусловливает большую амплитуду ПД, большую его длительность и большой рефрактерный период. Большие токи, генерируемые мышцами, дают возможность регистрировать миограмму с поверхности тела.

В состоянии покоя концентрация кальция в цитоплазме мышечного волокна мала, весь кальций с помощью кальциевых ионных насосов «закачан» в цистерны саркоплазматического ретикулума. Пройти в саркоплазму ионы кальция могут только по потенциалзависимым кальциевым ионным каналам. Т-система и предназначена для передачи потенциала, открывающего эти ионные каналы. Инициация процесса обусловлена приходом ПКП или ПД.

Итак, ПД запускает деполяризацию мембран Т-системы, из полостей саркоплазматического ретикулума по каналам кальций подходит к актиновым и миозиновым нитям. Актиновые и миозиновые нити скользят, тратится АТФ. Перемещение (протягивание) актиновых и миозиновых нитей происходит за счет «гребковых» движений головок миозина, несущих заряд и периодически прикрепляющихся к тонким нитям. Амплитуда одного гребка 20 нм, частота до 50 событий в секунду.

В покое головка миозинового «мостика» фосфориллирована, но не может прикрепится к актину из-за помехи в виде нити тропомиозина и глобулы тропонина. Для устранения этой помехи нужен кальций. Са ++ входит в пространство, окружающее миофибриллы, и в присутствии АТФ тропонин отодвигает нить тропомиозина. Миозиновая головка соединяется с актином. В этот момент мостик сгибается из-за конформации белка, осуществляется сдвиг на 1 шаг. Далее происходит отрыв мостика, снова идет фосфориллирование, и процесс повторяется. АТФ фосфориллирует миозин, тропонин блокирует актин. Все это описание отражает наиболее вероятный механизм мышечного сокращения, но он до конца не доказан. Доказана только роль АТФ и ионов кальция, а также факт скольжения нитей.

Сила и работа мышц.

Работа мышцы, как и всякого физического тела, определяется способностью поднять определенный груз (Р) на известную высоту h:

Одиночное волокно может развивать тягу 100-200 мг, вся мышца- несколько кг.

Основной источник энергии для совершения работы мышцей – АТФ. Запаса АТФ хватает для десятка сокращений, затем необходим его ресинтез. Используется перенос фосфатной группы от креатинфосфата, гликолиз и аэробное окисление. Окислению подвергается глюкоза и жирные кислоты. Механический КПД мышц не очень велик, 20-30%, но тепло, образующееся при их работе, не тратится «впустую», но используется в общей теплопродукции организма. Дрожательный термогенез – важная составляющая системы выработки тепла.

Из курса биохимии известно, что 1 моль АТФ дает 48 кДж энергии, для его ресинтеза нужно 3 моля кислорода. При тяжелой физической работе запасов О2 в мышцах мало для немедленного и достаточного ресинтеза АТФ. Поэтому начинается мобилизация анаэробного распада креатинфосфата и гликолиза, недоокисленные продукты (прежде всего молочная кислота) накапливаются. Создается кислородная задолженность, которая погашается системными реакциями – увеличением кровотока, учащением сердцебиений и ростом частоты дыхания. При тренировке возможна компенсация за счет правильного дыхания и кровообращения. Но чаще развивается утомление, прежде всего нервных центров, а затем и мышц. Утомление – в значительной степени результат кислородного дефицита.

Особенности гладких мышц.

Сила сокращений гладких мышц в пересчете на площадь физиологического поперечного сечения сопоставима с силой скелетных. Скорость сокращения и расслабления может быть на 2 порядка меньше.

Дата добавления: 2014-01-04 ; Просмотров: 1013 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector