Меню

Химические и энергетические процессы в работающих мышцах

Энергетика работы мышц

Источником энергии в клетках является вещество аденозинтрифосфат (АТФ), которое при необходимости распадается до аденозинфосфата (АДФ):

АТФ → АДФ + энергия.

При интенсивной нагрузке имеющийся запас АТФ расходуется всего за 2 секунды. Однако АТФ непрерывно восстанавливается из АДФ, что позволяет мышцам продолжать работать. Существует три основные системы восстановления АТФ: фосфатная, кислородная и лактатная.

Фосфатная система

Фосфатная система выделяет энергию максимально быстро, поэтому она важна там, где требуется стремительное усилие, например, для спринтеров, футболистов, прыгунов в высоту и длину, боксеров и теннисистов.

В фосфатной системе восстановление АТФ происходит за счет креатинфосфата (КрФ), запасы которого имеются непосредственно в мышцах:

КрФ + АДФ → АТФ + креатин.

При работе фосфатной системы не используется кислород и не образуется молочная кислота.

Фосфатная система работает только в течение короткого времени — при максимальной нагрузке совокупный запас АТФ и КрФ истощается за 10 секунд. После завершения нагрузки запасы АТФ и КрФ в мышцах восстанавливаются на 70% через 30 секунд и полностью — через 3–5 минут. Это нужно иметь в виду при выполнении скоростных и силовых упражнений. Если усилие длится дольше 10 секунд или перерывы между усилиями слишком короткие, то включается лактатная система.

Кислородная система

Кислородная, или аэробная, система важна для спортсменов на выносливость, так как она может поддерживать длительную физическую работу.

Производительность кислородной системы зависит от способности организма транспортировать кислород в мышцы. За счет тренировок она может вырасти на 50%.

В кислородной системе энергия образуется, главным образом, в результате окисления углеводов и жиров. Углеводы расходуются в первую очередь, так как для них требуется меньше кислорода, а скорость выделения энергии выше. Однако запасы углеводов в организме ограничены. После их исчерпания подключаются жиры — интенсивность работы при этом снижается.

Соотношение используемых жиров и углеводов зависит от интенсивности упражнения: чем выше интенсивность, тем больше доля углеводов. Тренированные спортсмены используют больше жиров и меньше углеводов по сравнению с неподготовленным человеком, то есть более экономично расходуют имеющиеся запасы энергии.

Окисление жиров происходит по уравнению:

Жиры + кислород + АДФ → АТФ + углекислый газ + вода.

Распад углеводов протекает в два шага:

Глюкоза + АДФ → АТФ + молочная кислота.

Молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода.

Кислород требуется только на втором шаге: если его достаточно, молочная кислота не накапливается в мышцах.

Лактатная система

При высокой интенсивности нагрузки поступающего в мышцы кислорода не хватает для полного окисления углеводов. Образующаяся молочная кислота не успевает расходоваться и накапливается в работающих мышцах. Это приводит к ощущению усталости и болезненности в работающих мышцах, а способность выдерживать нагрузку снижается.

В начале любого упражнения (при максимальном усилии — в течение первых 2 минут) и при резком увеличении нагрузки (при рывках, финишных бросках, на подъемах) возникает дефицит кислорода в мышцах, так как сердце, легкие и сосуды не успевают полностью включиться в работу. В этот период энергия обеспечивается за счет лактатной системы, с выработкой молочной кислоты. Чтобы избежать накопления большого количества молочной кислоты в начале тренировки, нужно выполнить легкую разогревающую разминку.

При превышении определенного порога интенсивности организм переходит на полностью анаэробное энергообеспечение, в котором используются только углеводы. Из-за нарастающей мышечной усталости способность выдерживать нагрузку истощается в течение нескольких секунд или минут, в зависимости от интенсивности и уровня подготовки.

Читайте также:  Статические упражнения на грудные мышцы для мужчин

Влияние молочной кислоты на работоспособность

Рост концентрации молочной кислоты в мышцах имеет несколько последствий, которые нужно учитывать при тренировках:

В условиях покоя на нейтрализацию половины молочной кислоты, накопившейся в результате усилия максимальной мощности, организму требуется около 25 минут; за 75 минут нейтрализуется 95% молочной кислоты. Если вместо пассивного отдыха выполняется легкая заминка, например, пробежка трусцой, то молочная кислота выводится из крови и мышц намного быстрее.

Высокая концентрация молочной кислоты может вызвать повреждение стенок мышечных клеток, что приводит к изменениям в составе крови. Для нормализации показателей крови может потребоваться от 24 до 96 часов. В этот период тренировки должны быть легкими; интенсивные тренировки сильно замедлят восстановительные процессы.

Слишком высокая частота интенсивных нагрузок, без достаточных перерывов на отдых, приводит к снижению работоспособности, а в дальнейшем — к перетренированности.

Запасы энергии

Энергетические фосфаты (АТФ и КрФ) расходуются за 8–10 секунд максимальной работы. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Как правило, их хватает на 60–90 минут интенсивной работы.

Запасы жиров в организме практически неисчерпаемы. Доля жировой массы у мужчин составляет 10–20%; у женщин — 20–30%. У хорошо тренированных спортсменов на выносливость процент жира может находиться в диапазоне от максимально низкого до относительно высокого (4–13%).

Запасы энергии человека

* Высвобождаемая энергия при переходе в АДФ
* Высвобождаемая энергия при переходе в АДФ
Источник Запас (при весе 70 кг) Длительность Дли-
тель-
ность
интенсивной
работы
Энергети-
ческая система
Особенности
Граммы Ккал
Фосфаты (фосфатная система энергообеспечения )
Фосфаты 230 8* 8—10 секунд Фосфатная Обеспечивают «взрывную» силу. Кислород не требуется
Гликоген (кислородная и лактатная системы энергообеспечения )
Гликоген 300—
400
1 200—
1 600
60—90 минут Кислородная и лактатная При нехватке кислорода образуется молочная кислота
Жиры (кислородная система энергообеспечения )
Жиры Больше 3 000 Больше 27 000 Больше 40 часов Кислородная Требуют больше кислорода; интенсивность работы снижается

По книге Петера Янсена «ЧСС, лактат и тренировки на выносливость».

Источник

Биохимия энергетических процессов в скелетных мышцах при совершении работы

Многие новички, да и профессиональные спортсмены сильно недооценивают важность теоритических знаний. Считается, что для обретения желаемого телосложения достаточно регулярно посещать тренажерный зал.

Лишь единицы догадываются, что основа всего – это теория. Ее правильное применение позволит стабильно прогрессировать, причем довольно быстрыми темпами!

Многие новички, да и профессиональные спортсмены сильно недооценивают важность теоритических знаний. Считается, что для обретения желаемого телосложения достаточно регулярно посещать тренажерный зал.

Лишь единицы догадываются, что основа всего – это теория. Ее правильное применение позволит стабильно прогрессировать, причем довольно быстрыми темпами!

Сегодня мы рассмотрим мышечную работу с точки зрения биохимии и физиологии. Знание такой теории необходимо для развития определенных характеристики (силы, выносливости и т.п.) а так же для составления тренировочных программ. Итак…

Все энергетические процессы в живом организме протекают благодаря расходу АТФ (аденозинтрифосфата). АТФ – это важнейший нуклеотид, олицетворяющий собой энергообмен любой клетки, будь то умственная деятельность, работа внутренних органов человека или же мышечная активность.

Как таковых запасов АТФ у человека не наблюдается. Система энергообмена организма, используя кислород воздуха, ежесекундно синтезирует и расходует огромное количество АТФ.

Читайте также:  Мышцы работающие в присяде

Мышечное сокращение и расслабление так же происходит благодаря расщеплению АТФ, однако при интенсивной и длительной работе, простых вдохов становится недостаточно. Именно поэтому организм обладает многоуровневой системой мышечного энергообмена, каждый из которых последовательно сменяет другой:

Прежде чем продолжить описание мышечного энергообмена, необходимо сказать несколько слов о расходе АТФ. Ресинтез АТФ возможен благодаря необычному строению данного нуклеотида.

Молекулы АТФ никогда не расщепляются полностью. Под действием фермента АТФазы аденозинтрифосфат подвергается гидролизу и тем самым отделяет от себя фосфатную группу – ортофосфорную кислоту (H3PO4). Данный процесс ведет к высвобождению энергии и появлению остаточного продукта – аденозиндифосфата (АДФ).

Грубо говоря, АТФ можно назвать соединением с тремя фосфатными группами, а АДФ – с двумя. Благодаря наличию АДФ возможен ресинтез АТФ. Формула реакции выглядит следующим образом:

АТФ + H2O = АДФ + H3PO4 + энергия

Все способы поддержания нормального энергообмена будь то гликолиз или окисление, используют АДФ в качестве сырья для создания новых молекул АТФ. Это основной принцип биохимии данного процесса!

А теперь посмотрим, как происходит ресинтез АТФ из АДФ в каждом из способов.

Алактатный способ
Как уже говорилось выше, запасов АТФ практически не существует. Их хватает на первые несколько секунд работы высокой мощности. Чтобы обеспечить мышечную группу энергией организм буквально с первых секунд запускает систему креатина.

В организме человека хранится как простой креатин, так и схожее соединение связанное с фосфатной группой – креатинфосфат (КрФ). Вся уникальность КрФ заключается в способности этих кристаллов отделять от себя ортофосфорную кислоту. Под действием активного фермента креатинкиназы фосфат из КрФ переходит к соединению АДФ, вследствие чего образуется новая молекула АТФ. В то же время, оставшись без фосфатной группы, КрФ превращается в обыкновенный креатин, на который впоследствии при помощи ферментов и кислорода присоединяется новая молекула ортофосфорной кислоты. Данный процесс описывается реакцией Ломана:

АДФ + КрФ = АТФ + креатин

Максимальная алактатная мощность зависит от многих факторов: от скорости работы креатинкиназы, от интенсивности внешней нагрузки, от величины потребления энергии и т.п. Однако, несмотря на это, известно, что предельная длительность удержания максимальной мощности креатин-системы находится в диапазоне 6-12 секунд.

Следует помнить, что продолжительность предельной алактатной работы во многом зависит от запасов креатина в мышцах. Представьте аналогию с транспортировкой грузов. В нашем случае груз – это фосфатные группы, а креатин – грузовик перевозчик.

Наличие в вашей компании лишь 4-5 грузовиков не позволит совершать регулярные и быстрые перевозки. В то же время штат из 20-30 перевозчиков позволит наладить бесперебойную поставку грузов. Именно поэтому креатиновые добавки пользуются огромной популярностью. Их регулярный прием позволяет увеличить число «перевозчиков».

Стоит отметить, что количество креатина у тренированного человека в 1,5-2 раза превышает запасы данного соединения у обычного человека.

При нагрузке средней мощности запасов КрФ хватает на 20-30 секунд. Восстановление до исходного уровня происходит за 2-5 минут отдыха, с помощью обыкновенного кислорода. Этим объясняется появление отдышки (кислородного долга) сразу после выполнения тяжелого упражнения.

Лактатный способ
Гликолиз – это расщепление одной молекулы глюкозы на две молекулы лактата (молочной кислоты), с соответствующим высвобождением энергии, которой хватает для ресинтеза двух молекул АТФ. Данный процесс протекает с помощью ферментов, непосредственно в саркоплазме мышечного волокна (клетки).

Читайте также:  Снижение тонуса мышц кишечника

Главная особенность анаэробного гликолиза – отсутствие потребности в кислороде!

Энергетический потенциал и общая продуктивность данного способа выше, нежели система КрФ, однако и здесь есть ложка Дегтя. Взгляните на формулу:

Столь быстрый ресинтез АТФ ведет к появлению побочного продукта – молочной кислоты. Скорость вымывания лактата, как правило, ниже скорости его появления, вследствие чего с каждой секундой его становится все больше.

Недостаток лактата заключается в блокировании сигналов от мотонейронов. При достаточном скоплении молочной кислоты вы теряете способность иннервировать рабочую мышечную группу, т.е. вы не можете сократить или расслабить ее. Все это, в сумме с повышенной кислотностью, вызывает соответствующее чувство «жжения».

Отдых длительностью 4-5 минут позволяет утилизировать небольшую часть лактата, вследствие чего к вам возвращается мышечная работоспособность. Спустя несколько часов после тренинга, практически вся молочная кислота вымывается. Поэтому всевозможные заявления о том, что послетренировочные боли (крепатура) на следующие сутки вызваны остаточным лактатом – не более чем стереотип.

Гликолиз активизируется примерно на 15-20 секунде, а его пик приходится на 30-40 секунду непрерывной работы.

Максимальная лактатная мощность может длиться от 30 до 60 секунд. При этом существует огромное количество факторов влияющих на данную характеристику. Так, вы можете развивать способность мышц противостоять кислой среде вызванной лактатом, или же повышать количество накопленного в мышечной группе гликогена. Стоит помнить, что гликоген печени не используется для энергообеспечения мышц, так как не обладает нужной мобильностью.

Окислительный способ
При более длительной нагрузке реакция анаэробного гликолиза идет на спад и постепенно уступает место аэробному окислению. Данный процесс является самым эффективным с точки зрения энергообеспечения, так как в 19 раз эффективнее лактатного способа:

Окисление протекает в митохондриях расположенных в мышечных клетках (симпластах). Данный способ энергообеспечения возможен только при наличии кислорода, чем и обуславливается его длительная активация. Аэробный гликолиз запускается после 80-90 секунд непрерывной работы, а пик реакции наблюдается на 2-3 минуте нагрузки. Столь позднее участие окисления объясняется необходимостью запуска огромного числа различных процессов, обеспечивающих доставку кислорода к митохондриям. После трех минут аэробной активности, возникает утомление большинства активно работающих систем организма, в частности ЦНС и мотонейронов.

Количество повторений отражает способ восполнения энергии и тренируемую функцию. Действительно, для развития силовых характеристик необходимо уделять внимание 4-6 повторениям, так как это тренирует суставы и связки, механизм Гольджи и, кроме того, увеличивает количество свободного КрФ.

Также силовой диапазон повторений развивает миофибриллярный аппарат. В общем и целом, повышается сила спортсмена, однако вместе с развитием данной характеристики ухудшается работа кровеносной системы, новые миофибриллы попросту вытесняют кровеносные сосуды. Повышение силы влияет на увеличение мускулатуры, но не так сильно, как тренировка гликолитических способностей мышц.

Регулярная анаэробная работа предельной мощности развивает целый каскад характеристик. Принято считать, что именно 8-12 повторений ведут к гипертрофии мышечных волокон (клеток). Тренировки такого типа способствуют заметному увеличению мускулатуры и соответствующему развитию кровеносной системы.

Грубо говоря, именно 8-12 повторений в каждом подходе, заставляют ваши мышцы увеличиваться в размерах!

Итоги
Из всего вышесказанного можно сделать довольно простые выводы:

Источник

Adblock
detector