Меню

Химический состав мышц животного

Химический состав мышечной ткани

В мышечной ткани содержится 72-80% воды, 20-28% приходится на долю сухого остатка, в основном – белков. Помимо белков, в состав сухого остатка входят гликоген и иные углеводы, липиды и некоторые другие соединения.

Классификацию мышечных белков можно представить следующей схемой:

Рис.1 Классификация мышечных белков.

К белкам сарколеммы относятся: липопротеиды, коллаген, эластин. Они не растворимы в воде, обеспечивают избирательную проницаемость для ионов и молекул, а также эластичность и прочность.

В состав саркоплазмы входят белки-ферменты гликолиза; дыхательный пигмент миоглобин, который обладает большим сродством к кислороду, чем гемоглобин; белки-ферменты, катализирующие процессы тканевого дыхания, окислительного фосфорилирования, ферменты белкового и липидного обмена.

Белки ядер – это гистоны, которые входят в состав хромосом. Основная роль этих белков – участие в передаче наследственной информации.

Белки митохондрий – ферменты цикла Кребса, дыхательной цепи и β-окисления жирных кислот.

К группе миофибриллярных белков относят белки, тесно связанные с сократительной функцией мышц: актин, миозин, тропомиозин, тропонин.

Миозинобразует толстые протофибриллы, его количество составляет 50-55% сухой массы миофибрилл. Он обладает АТФ-азной активностью, т.е. способен катализировать расщепление АТФ на АДФ и Н3РО4. Химическая энергия, высвобождающаяся в ходе этой ферментативной реакции, превращается в механическую энергию мышечного сокращения.

Актин образует тонкие протофибриллы. Он существует в двух способных переходить друг в друга формах: глобулярный (Г-актин) и фибриллярный (Ф-актин). При мышечной деятельности в присутствии ионов К + и Мg 2+ глобулярный актин переходит в фибриллярный, который легко объединяется с миозином. В покое молекулы актина и миозина между собой не взаимодействуют.

Тропонин и тропомиозин – водорастворимые фибриллярные белки. При отсутствии ионов Са 2+ они блокируют связывание актина с миозином.

Таким образом, основныефункции мышечных белков:

Помимо белков в мышцах значительная часть сухого остатка приходится на долю небелковых веществ. Основные небелковые вещества представлены на рис. 2.

Рис.2 Небелковые вещества мышц.

В состав мышц входит ряд азотсодержащих веществ: АТФ, АДФ, АМФ, нуклеотиды, креатинфосфат, креатин, креатинин, карнозин, ансерин, свободные аминокислоты и др. Креатин и креатинфосфат составляют около 60% небелковых веществ мышц. В мышцах встречаются свободные аминокислоты, среди которых в наибольшем количестве представлены глутаминовая кислота и ее амид (глутамин). В состав клеточных мембран мышечной ткани входит ряд фосфоглицеридов, которые принимают участие в обменных процессах (в качестве субстратов тканевого дыхания). Другие азотсодержащие вещества (мочевина, мочевая кислота, аденин, гуанин и др.) встречаются в мышцах в небольшом количестве и являются промежуточными или конечными продуктами азотистого обмена.

Основным углеводом мышц является гликоген, концентрация которого колеблется от 0,3% до 2 % и выше. Свободной глюкозы в мышцах очень мало, а молочная, пировиноградная и другие карбоновые кислоты образуются в процессе расщепления аминокислот и глюкозы.

Состав минеральных солей в мышцах разнообразен. Из катионов больше всего натрия и калия. Калий сосредоточен главным образом внутри мышечных волокон, а натрий – преимущественно в межклеточном веществе. Значительно меньше в мышцах магния, кальция и железа. В мышечной ткани содержится ряд микроэлементов: кобальт, алюминий, никель, бор, цинк.

Основным фосфоросодержащим веществом мышц является АТФ – главный источник энергии для мышечного сокращения. Среди других макроэргических веществ, содержащих фосфатные группы, нужно отметить: АТФ, АМФ, креатинфосфат, нуклеотиды НАД и ФАД. Нуклеиновые кислоты ДНК и РНК также относятся к соединениям, содержащим фосфор.

Липиды мышечной ткани представлены нейтральными липидами (жирами), глицерином, фосфолипидами, холестерином. Всего на их долю приходится порядка 1% мышечной массы. Липиды входят в состав сарколеммы и участвуют в обеспечении энергией мышечного сокращения при достаточном поступлении кислорода.

В составе мышечной ткани с возрастом происходят значительные изменения. Эмбриональная мышца отличается по химическому составу от скелетной мускулатуры взрослых людей. В мышце с возрастом уменьшается содержание воды и увеличивается количество белка. По мере взросления в мышце возрастает количество высокоэнергетических соединений (АТФ и креатинфосфата). Ансерин и карнозин появляются в мышечной ткани в строго определенный период онтогенеза. Время появления этих дипептидов связано с формированием рефлекторной дуги, обеспечивающей возможность двигательного рефлекса, появлением Са 2+ чувствительности актомиозина и началом работы ионных насосов.

Источник

Химический состав мышц животного

МЫШЕЧНАЯ ТКАНЬ ЖИВОТНЫХ

Химический состав мышечной ткани

Химический состав мышечной ткани сложен и включает воду, органические и неорганические вещества. Главным компонентом органических веществ в мышце являются белки.
Распределение белков в структурных элементах мышцы показано в виде схемы (рис. 5.4).

Рис. 5.4. Состав белков мышечной ткани

Белковые вещества составляют 60-80 % сухого остатка мышечной ткани. Из них построены структурные компоненты клеток и межклеточного вещества. Белки мышечной ткани влияют не только на пищевую и биологическую ценность мяса, но и предопределяют состояние физико-химических, структурно-механических и технологических показателей сырья (липкость, вязкость, водосвязывающая способность, pH и т.п.) и готовой продукции (сочность, нежность, выход). Они различны по аминокислотному составу, строению, биологическим функциям, физико-химическим показателям, в том числе растворимости. Растворимые белки входят, в основном, в состав плазмы, солерастворимые образуют миофибриллы. Нерастворимые в водно-солевых растворах фракции условно называют белками стромы, в состав которых входят белки сарколеммы, ядер и внутриклеточные соединительнотканные белки.

Читайте также:  Материал о многообразии мышц

Белки саркоплазмы. Миоген, глобулин X, миоальбумин, миоглобин — составляет около 40 % мышечных белков. Все они, за исключением миоглобина, являются сложными смесями белковых веществ, близких по физико-химическим и биологическим свойствам. Белки саркоплазмы относятся к глобулярным белкам, они водорастворимы, в основном полноценны и хорошо усваиваются (табл. 5.2).

Таблица 52. Основные показатели белков саркоплазмы

Молекуляр­ная масса

pH изоэлекгри- ческой точки

Температура коагуляции, °С

Содержание белка (в % к общему количеству белков)

Миоген, миоалъбумин и глобулин X относятся к простым белкам. В состав фракции миогенов входят многие ферменты мышечной ткани, функции которых связаны с превращениями углеводов и других веществ.

Миоглобин — один из наиболее важных белков, так как обусловливает красную окраску мышечной ткани.

Миоглобин участвует в передаче кислорода, поставляемого кровью, клеткам мышечной ткани. Он легко соединяется с газами, образуя производные, имеющие различную окраску. Вопросы формирования окраски мяса изложены далее.

Белки миофибрилл — актин, миозин, актомиозин, тропомиозин, тропо-нин и др. играют главную роль в двигательной функции организма и потому называются сократительными. Это преимущественно фибриллярные белки.

Таблица 53. Основные показатели белков миофибрилл

Содержание белка (в % к общему количеству белков)

Устойчив при нагреве до 100 С С

Миозин составляет основную часть белковых веществ мышечного волокна и является наиболее важным функциональным белком мышечной ткани. Миозин — полноценный белок, хорошо усваивается.

Молекула миозина представляет собой длинную фибриллярную нить с глобулярной головкой и построена из двух больших и двух малых поли-пептидных цепей (рис. 5.5). Большие полипептидные цепи, свернутые в а — спираль, закручены относительно одна другой и образуют двойную спираль. На конце молекулы миозина две более короткие полипептидные цепочки присоединены к спирали и как бы продолжают ее. Они не связываются в

общую спираль, а находятся в свободном состоянии, образуя шарообразное утолщение — головку.

Большое количество полярных групп, а также фибриллярная форма молекулы обусловливают высокую гидратацию миозина и его способность связывать большое количество воды, а также ионы калия, кальция и магния.

Особенностью миозина является его способность расщеплять АТФ на АДФ и Н3РО4, т.е. он наделен ферментативной активностью, которую называют АТФ-аз-ной активностью. АТФ-азная активность этого белка проявляется только при определенной концентрации ионов кальция.

Молекулы миозина легко соединяются между собой и с другими белками, в частности с актином они образуют соединение актомиозин.

Актин может существовать в двух формах: глобулярной — Г-актин и фибриллярной — Ф-актин. В растворах с низкой ионной силой актин существует в виде шаровидного Г-актина с молекулярной массой 47000. При повышении ионной силы Г-актин полимеризуется в Ф-актин. Полимеризация ускоряется в присутствии аденозинфосфата (АТФ), ионов Mg2+.

Ф-актин состоит из двух Г-активных цепей, образующих двойную спираль (рис. 5.6), в каждой спирали по 200-300 глобул-бусинок.
По аминокислотному составу актин относится
к полноценным белкам.

Актомиозин; Это сложный комплекс, состоящий из двух белков — актина и миозина. При его образовании молекулы миозина прикрепляются своими головками к бусинкам актина через SH-группы миозина и ОН-группы актина. Поскольку цепь Ф-актина содержит много молекул Г-актина, каждая нить Ф-актина может связывать большое количество миозина.

Отличительные особенности молекул миозина: высокая водосвязующая способность; ферментативная (АТФ-азная) активность; ассоциация друг с другом; взаимодействие с актином и другими белками; способность связывать ионы Са, КMg:

Соотношение актина и миозина в комплексе может быть различным, по­этому молекулярная масса актомиозина колеблется в широких пределах. Формирование комплекса сопровождается увеличением вязкости раствора, которая зависит от соотношения актина и миозина: чем больше содержится актина, тем выше вязкость.

Диссоциация актомиозина на актин и миозин происходит под действи­ем АТФ, а также при высокой концентрации солей.

Тропомиозин содержится в тонких нитях миофибрилл. Он растворим в воде, но из мышечной ткани не извлекается. Его характерной особенностью является устойчивость к денатурации.

Тропомиозин состоит из двух полипептидных цепей, которые образуют двойную спираль. Тропомиозин может образовывать комплексы с Ф-акти- ном и участвует в сокращении мышц. Тропомиозин относится к неполно­ценным белкам из-за отсутствия триптофана.

Читайте также:  Растягиваем мышцы ног и спины

Кроме актина, миозина, актомиозина и тропомиозина в миофибриллах присутствуют также в небольших количествах тропонин, альфа- и бета-ак- тинин, М- и С-протеин, десмин.

Белки стромы Представлены в основном соединительно-тканными бел­ками — коллагеном, эластином, ретикулином, а также гликопротеидами — муцинами и мукоидами. Эти белки извлекаются щелочными растворами. Структуры и свойства белков будут рассмотрены ниже.

Вода, входящая в состав мышечной ткани является не только раствори­телем реагирующих веществ, но и сама участвует во многих реакциях обме­на. В тканях вода находится как в прочносвязанной форме — главным обра­зом с белками, так и в слабо связанном состоянии (6-15 % от массы ткани).

Липиды мышечной ткани входят в структурные элементы мышечного волокна. Они содержатся в саркоплазме мышечного волокна и в межклеточ­ном пространстве, между пучками мышц в прослойках соединительной тка­ни. Содержание их в мышечной ткани невелико и колеблется в зависимо­сти от вида, возраста, упитанности, пола животного и других факторов. Некоторые из них способствуют проявлению активности ряда ферментов, другие выполняют роль энергетического материала, резерва, выделяя при окислении энергию.

Углеводы представлены в мышечной ткани в основном гликогеном, важнейшим источником энергии. Распад гликогена в послеубойный период обуславливают такие биохимические изменения мяса, как посмертное око­ченение, созревание. Часть гликогена мышечного волокна связана с белка­ми, часть находится в свободном состоянии.

К азотистым экстрактивным веществам мяса относятся вещества двух групп: вещества одной группы при жизни животного выполняют специфиче­ские функции организма в процессе обмена веществ и энергии, вещества дру­гой группы представляют собой промежуточные продукты обмена веществ.

Различают азотистые и безазотмстые экстрактивные вещества. К безазо-тистым относятся углеводы и продукты их обмена (глюкоза, мальтоза, молочная, пировиноградная, янтарная и другие органические кислоты), а также витамины и органические фосфаты.

К азотистым экстрактивным веществам относятся конечные (мочевина, мочевая кислота, аммонийные соли и др.) и промежуточные (нуриновые основания, аминокислоты и др.) продукты белкового обмена.

Содержание отдельных азотистых экстрактивных веществ в мышечной ткани (в % на сырую ткань) показано в табл. 5.4.

После убоя животного азотистые экстрактивные вещества, продукты их превращения участвуют в создании специфического аромата и вкуса созревшего мяса.

Минеральный состав мышечной ткани разнообразен. Особенно много содержится калия и фосфора. Минеральные вещества находятся в растворенном состоянии, а также в связанной с белками форме. Для активной деятельности мышц в процессах сокращения и расслабления важную роль играют кальций, калий и магний.

В составе мышечной ткани имеются почти все водорастворимые витамины, кроме витамина С.

Таблица 5.4. Содержание азотистых экстрактивных вегцеств в мышечной

Источник

Химический состав мышечной ткани

В мышечной ткани человека содержится 72–80% воды и 20–28% сухого остатка от массы мышцы. Вода входит в состав большинства клеточных структур и служит растворителем для многих веществ. Большую часть сухого остатка образуют белки и другие органические соединения (табл. 2).

Рис. 4. Схема расположения Т-систем и саркоплазматического
ретикулума в мышечном волокне

Химический состав скелетных мышц млекопитающих

Компонент % на сырую массу Компонент % на сырую массу
Вода 72–80 АТФ 0,25–0,40
Сухой остаток: 20–28 карнозин 0,20–0,30
белки 16,50–20,90 карнитин 0,02–0,05
гликоген 0,30–3,00 ансерин 0,09–0,15
фосфолипиды 0,40–1,00 свободные аминокислоты 0,10–0,70
холестерин 0,06–0,20 молочная кислота 0,01–0,02
креатинфосфат 0,20–0,55 зола 1,00–1,50
креатин 0,003–0,005

Основные белки мышц

Среди белков мышечной ткани выделяют три основные группы: саркоплазматические белки, на долю которых приходится около 35%, миофибриллярные белки, составляющие около 45%, и белки стромы, количество которых достигает 20%.

Саркоплазматические белки растворимы в воде и слабых солевых растворах. Основную массу их составляют белки-фермен­ты, локализованные главным образом в митохондриях и катализирующие процессы окислительного фосфорилирования, а также многие ферменты гликолиза, азотистого и липидного обменов, находящиеся в саркоплазме. К этой группе относится также белок миоглобин, который связывает кислород с большим сродством, чем гемоглобин, и депонирует молекулярный кислород в мышцах. В последнее время открыта группа саркоплазматических белков парвальбуминов, которые способны связывать ионы кальция, однако их физиологическая роль остается не выясненой.

Миофибриллярные белки включают сократительные белки миозин, актин и актомиозин, а также регуляторные белки тропомиозин, тропонин, α- и β-актинины. Миофибриллярные белки обеспечивают сократительную функцию мышц.

Миозин является одним из основных сократительных белков мышц и составляет около 55% общего количества мышечных белков. Из него состоят толстые нити (филаменты) миофибрилл. Молекулярная масса этого белка – около 470 000. В молекуле миозина различают длинную фибриллярную часть и глобулярные структуры (головки). Фибриллярная часть молекулы миозина имеет двуспиральную структуру (рис. 5).

В составе молекулы выделяют шесть субъединиц: две тяжелые полипептидные цепи (молекулярная масса 200 000) и четыре легкие цепи (молекулярная масса 1500–2700), расположенные в глобулярной части. Основной функцией фибриллярной части молекулы миозина является способность образовывать хорошо упорядоченные пучки миозиновых филаментов или толстые протофибриллы (см. рис. 5). На головках молекулы миозина расположены активный центр АТФ-азы и актинсвязывающий центр, поэтому они обеспечивают гидролиз АТФ и взаимодействие с актиновыми филаментами.

Читайте также:  Набор упражнений для мышц груди

Рис. 5. Схема строения молекулы миозина (а), миозинового пучка (б)
и миозиновой толстой нити (в)

Химическая энергия АТФ, освобождающаяся в ходе данной ферментативной реакции, используется для изменения конформации белка миозина и генерации напряжения между толстыми и тонкими нитями миозина в сокращающейся мышце. Посредством ионов Mg 2+ миозин способен присоединять молекулы АТФ и АДФ, а также взаимодействовать с молекулами актина, находящимися в составе тонких нитей миофибрилл.

Актин – второй сократительный белок мышц, который составляет основу тонких нитей (рис. 6). Известны две его формы – глобулярный G-актин и фибриллярный F-актин. Глобулярный актин – это шарообразный белок с молекулярной массой 42 000. На его долю приходится около 25% общей массы мышечного белка.

F-актин активирует АТФ-азу миозина, что создает движущую силу процессу сокращения.

Рис. 6. Схема строения актиновой, или тонкой нити

В состав тонких нитей наряду с актином входят и другие минорные белки – тропомиозин, тропонины, актинины.

Тропомиозин (Тм) – это структурный белок актиновой нити, представляющий собой вытянутую в виде тяжа молекулу. Две его полипептидные цепи как бы обвивают актиновые нити (см. рис. 6). На концах каждой молекулы тропомиозина расположены белки тропониновой системы, наличие которой характерно только для поперечно-полосатых мышц.

Тропонин (Тн) является регуляторным белком актиновой нити. Он состоит из трех субъединиц – ТнТ, ТнI и ТнС. Тропонин Т(ТнТ) обеспечивает связывание этих белков с тропомиозином. Тропонин I (ТнI) блокирует (ингибирует) взаимодействие актина с миозином.

Таким образом, тонкий филамент миофибриллы поперечно-полосатой мышцы состоит из F-актина, тропомиозина и трех тропониновых компонентов – ТнС, ТнI и ТнТ. Кроме этих белков, в мышечном сокращении участвует белок актинин. Обнаруживается он в зоне Z-линии, к которой крепятся концы F-актиновых молекул тонких нитей миофибрилл.

Белки мышечной стромы в скелетной мышце представлены в основном коллагеном и эластином, которые входят в состав сарколеммы и Z-линий миофибрилл. Эти белки обладают эластичностью, большой упругостью, что имеет существенное значение для процесса сокращения и расслабления мышцы.

Небелковые компоненты мышц

В состав сухого остатка мышц наряду с белками входят и другие вещества, среди которых выделяют азотсодержащие, безазотистые экстративные вещества и минеральные вещества.

К азотсодержащим веществам скелетных мышц относятся АТФ и продукты ее расщепления – АДФ и АМФ, а также креатинфосфат, креатин, креатинин, карнозин, ансерин, свободные аминокислоты и др.

АТФ, содержащаяся в количестве 0,25-0,40%, и креатинфосфат, количество которого колеблется в пределах 0,4-1,0%, являются источниками энергии мышечного сокращения. Продукты их распада – АДФ, АМФ и креатин – оказывают регулирующее действие на обмен веществ в мышцах. Карнозин является дипептидом и участвует в переносе фосфатных групп, стимулирует работу ионных насосов, увеличивает амплитуду мышечного сокращения, которые снижаются при утомлении и этим способствуют восстановлению работоспособности. Карнитин участвует в переносе жирных кислот – важных энергетических источников – через мембраны митохондрий и тем самым способствует их окислению и энергообразованию.

В состав различных клеточных мембран мышечной ткани входит ряд азотсодержащих фосфолипидов: фосфатидилхолин (лецитин), фосфатидилэтаноламин (кефалин), фосфатидилсерин и др. фосфолипиды участвуют в обменных процессах, являясь поставщиками холина и жирных кислот – субстратов тканевого дыхания. Другие азотсодержащие вещества – мочевина, мочевая кислота, пуриновые основания (аденин, гуанин) – являются промежуточными или конечными продуктами азотистого обмена и встречаются в мышцах в небольших количествах.

К безазотистым соединениям мышечной ткани относится гликоген, который находится в саркоплазме в свободном или связанном с белками состоянии и используется в мышцах как основной энергетический субстрат при напряженной работе. Количество его в зависимости от пищевого рациона питания и степени тренированности колеблется от 0,3 до 3,0% общей массы мышц. При тренировке увеличивается главным образом количество свободного гликогена.

В мышце содержится ряд промежуточных продуктов обмена углеводов – гексозофосфаты, пировиноградная и молочная кислоты.

Из липидов в мышечной ткани обнаруживаются триглицериды в виде капелек жира, а также холестерин.

В мышечной ткани содержится ряд микроэлементов: кобальт, железо, никель, бор, цинк и др. Они являются либо структурными компонентами сложных белковых молекул, либо активаторами ферментов. Все минеральные вещества играют важную роль в регуляции различных биохимических процессов в мышцах.

Источник

Adblock
detector