Меню

Медленные двигательные единицы мышц

Медленные двигательные единицы мышц

Погружаясь в мышцу на уровне брюшка, нерв отдает ветви, образующие сплетение, из которого группы аксонов направляются к мышечным волокнам. Аксоны подходят к отдельным двигательным концевым пластинкам, расположенным на уровне середины длины мышечных волокон.

Двигательная единица представлена двигательным нейроном спинного мозга или ствола и иннервируемой им группой мышечных волокон. Двигательные единицы крупных мышц (например, мышц-сгибателей бедра или коленного сустава) содержат от 1200 мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие и плавные движения (например, внутренних мышц руки), включают 12 мышечных волокон и менее.

Волокна скелетных мышц разделяют на три группы:

1. Медленно сокращающиеся окислительные мышечные волокна содержат большое количество митохондрий и кровеносных капилляров, в связи с чем их называют «красными». Они характеризуются устойчивостью к утомлению и невысокой силой. Волокна этого типа расположены в глубоких слоях мышц и обеспечивают поддержание позы, в том числе и положения стоя. Другие названия таких волокон — волокна тина I, медленно сокращающиеся неутомляемые волокна.

2. Быстрые гликолитические мышечные волокна характеризуются большими размерами и малым количеством митохондрий и кровеносных капилляров, в связи чем их называют «белыми». Волокна этого типа расположены преимущественно в поверхностных мышцах и способны к коротким мощным сокращениям. Другие названия таких волокон — волокна типа IIб, быстро сокращающиеся утомляемые волокна.

3. Промежуточные (быстрые, окислительно-гликолитические) мышечные волокна обладают свойствами, занимающими переходное положение между характеристиками вышеперечисленных типов волокон. Другие названия таких волокон — волокна типа Па, быстро сокращающиеся неутомляемые волокна.

Каждая мышца состоит из волокон всех трех типов, а их соотношение определяет ее функцию. Двигательная пластинка содержит в своем составе мышечные волокна только одного типа, однако они переплетаются с волокнами других мышечных пластинок. В зависимости от типов волокон выделяют «медленные» и «быстрые» мышцы.

а) Двигательные концевые пластинки. В области нервно-мышечного соединения аксон разделяется на несколько ветвей, которые лежат в углублениях на поверхности мышечного волокна. Подлежащая сарколемма формирует синаптические складки. Базальная мембрана мышечного волокна ограничивает синаптическую щель и выстилает складки. Расположенная ниже саркоплазма, получившая название «опорная пластинка», содержит большое количество ядер, митохондрий и рибосом.

Каждая ветвь аксона формирует концевое утолщение, в котором расположены тысячи синаптических пузырьков с ацетилхолином (АХ). Синаптическая передача осуществляется в области активных зон, расположенных на уровне верхних участков синаптических складок.

Ацетилхолин (АХ) высвобождается в синаптическую щель с высокой скоростью за счет экзоцитоза, проникает через базальную мембрану путем диффузии и связывается с соответствующими рецепторами сарколеммы, что приводит к ее деполяризации. Деполяризация распространяется вглубь мышечного волокна за счет Т-трубочек. Саркоплазматическая сеть высвобождает ионы Са2′, что запускает сокращение саркомеров.

В области базальной мембраны содержится большое количество фермента ацетилхолинэстеразы, за счет чего приблизительно 30 % высвобождаемого АХ гидролизуется, не достигнув постсинаптической мембраны. Фрагменты молекул ацетилхолина, образовавшиеся в результате гидролиза, захватываются активным способом и переносятся обратно в аксоплазму.

Кроме того, в концевых утолщениях аксона присутствуют гранулярные везикулы, содержащие один или несколько пептидных медиаторов. Наиболее известный — кальцитонин ген-связанный пептид (вазоактивный интестинальный пептид), обладающий выраженными сосудорасширяющими свойствами.

Подробное описание процесса сокращения мышечного волокна представлено на рисунке ниже.

Двигательная иннервация скелетной мускулатуры.
(А) Один аксон образует четыре двигательные концевые пластинки.
(Б) Увеличенный фрагмент изображения (А).
(В) Увеличенный фрагмент изображения (Б), демонстрирующий активные зоны.

Читайте также:  Упражнения на тренировку мышц хрусталика

б) Особенности двигательных единиц у пожилых людей. Основная причина прогрессирующей слабости мышц у пожилых людей — утрата двигательных нейронов спинного мозга и ствола, возникающая отчасти вследствие неспецифической периферической нейропатии в результате заболеваний сосудов и/или недостаточности питания. Согласно данным электромиографии, сокращение мышц у пациентов 70-80 лет характеризуются образованием гигантских потенциалов двигательной единицы.

Освободившиеся в результате гибели аксонов концевые пластинки захватываются коллатеральными ветвями аксонов сохранных двигательных концевых пластинок, что становится причиной формирования таких увеличенных потенциалов.

Сокращение мышечного волокна.
На данных изображениях продемонстрированы процессы, последовательно происходящие во время сокращения поперечно-исчерченного мышечного волокна.

Редактор: Искандер Милевски. Дата публикации: 12.11.2018

Источник

Моторная или двигательная единица представляет собой группу волокон, которые иннервируются одним мотонейроном. Количество волокон, входящих в одну единицу, может варьироваться в зависимости от функции мышцы. Чем более мелкие движения она обеспечивает, тем меньше моторная единица и меньше усилий надо для ее возбуждения.

Двигательные единицы: их классификация.

В изучении данной темы есть важный момент. Существуют критерии, по которым может быть охарактеризована любая двигательная единица. Физиология как наука, выделяет два критерия:

Соответственно, исходя из этих показателей, можно выделить три типа двигательных единиц.

Единицы первого типа

Единицы второго типа

Двигательная единица этого типа имеет крупный мотонейрон с толстым и длинным аксоном, который иннервирует большой пучок мышечных волокон. Эти нервные клетки имеют наиболее высокий порог возбуждения и высокую скорость проведения нервных импульсов.

При максимальном напряжении мышцы, частота нервных импульсов может достигать пятидесяти в секунду. Но мотонейрон не способен длительно поддерживать такую скорость проведения, поэтому быстро устает. Сила и скорость сокращения мышечного волокна второго типа выше, чем у предыдущего, так как количество миофибрилл в нем больше. В волокнах содержится много ферментов, расщепляющих глюкозу, но меньше митохондрий, белка миоглобина и кровеносных сосудов.

Единицы третьего типа

Двигательная единица третьего типа относится быстрым, но устойчивым к утомлению мышечным волокнам. По своим характеристикам она должна занимать промежуточное значение между первым типом двигательных единиц и вторым. Мышечные волокна таких мышц сильные, быстрые и выносливые. Для добычи энергии она могут использовать как аэробный, так и анаэробный пути.

Соотношение быстрых и медленных волокон генетически детерминировано и может отличаться у разных людей. Именно поэтому кто-то хорош в беге на длинные дистанции, кто-то с легкостью преодолевает спринтерскую стометровку, а кому-то больше подходит тяжелая атлетика.

Рефлекс на растяжение и мотонейронный пул

При растягивании любой мышцы первыми реагируют медленные волокна. Их нейроны генерируют разряды до десяти импульсов в секунду. Если мышцу продолжать растягивать, то частота генерируемых импульсов возрастет до пятидесяти. Это приведет к сокращению двигательных единиц третьего типа и увеличит силу мышцы в десять раз. При дальнейшем растяжении подключатся моторные волокна второго типа. Это преумножит силу мышцы еще в четыре-пять раз.

Двигательная мышечная единица управляется мотонейроном. Совокупность нервных клеток, входящих в состав одной мышцы, называется мотонейронный пул. В одном пуле могут одновременно находиться нейроны из разных, по качественным и количественным проявлениям, двигательных единиц. Из-за этого участки мышечных волокон включаются в работу не одновременно, а по мере того, как увеличивается напряжение и скорость нервных импульсов.

Читайте также:  Какая мышца прикреплена только к коже

«Принцип величины»

Двигательная единица мышцы, в зависимости от ее типа, сокращается только при достижении определенной пороговой нагрузки. Порядок возбуждения моторных единиц стереотипный: сначала сокращаются мелкие мотонейроны, затем нервные импульсы постепенно добираются до крупных. Эту закономерность в середине двадцатого века заметил Эдвуд Хеннеман. Он назвал ее «принцип величины».

Броун и Бронк за полвека до этого публиковали свои труды по исследованию принципа работы мышечных единиц разных типов. Они выдвинули предположение, что существует два способа управления сокращениями мышечных волокон. Первый из них – это увеличить частоту нервных импульсов, а второй – вовлечь в процесс как можно большее количество мотонейронов.

Источник

Классификация двигательных единиц

По морфофункциональным свойствам двигательные единицы делятся на 3 типа:

1. Медленные неутомляемые ДЕ. Мотонейроны имеют наиболее низкий порог активации, способны поддерживать устойчивую частоту разрядов в течение десятков минут (т.е. неутомляемы). Аксоны обладают небольшой толщиной, низкой скоростью проведения возбуждения, иннервируют небольшую группу мышечных волокон. Мышечные волокна развивают небольшую силу при сокращении в связи с наличием в них наименьшего количества сократительных белков – миофибрилл. Это так называемые «красные волокна» (цвет обусловлен хорошим развитием капиллярной сети и небольшим количеством миофибрилл). Скорость сокращения этих волокон в 1,5 – 2 раза меньше, чем быстрых. Они неутомляемы благодаря хорошо развитой капиллярной сети, большому количеству митохондрий и высокой активности окислительных ферментов.

2. Быстрые, легко утомляемые ДЕ. Имеют наиболее крупный мотонейрон, обладающий наиболее высоким порогом возбуждения, не способны в течение длительного времени поддерживать устойчивую частоту разрядов (утомляемые). Аксоны толстые, с большой скоростью проведения нервных импульсов, иннервирует много мышечных волокон. Мышечные волокна содержат большое число миофибрилл, поэтому при сокращении развивают большую силу. Благодаря высокой активности ферментов скорость сокращения высокая. Эти волокна быстро утомляются, т.к. содержат меньше, по сравнению с медленными, митохондрий и окружены меньшим количеством капилляров.

3. Быстрые, устойчивые к утомлению. Сильные, быстро сокращающиеся волокна, обладающие большой выносливостью благодаря возможности использования аэробных и анаэробных процессов получения энергии. Волокна 2 и 3 типов называются «белыми волокнами» из-за большого содержания миофибрилл и низкого – миоглобина.

Сравнение медленных и быстрых мышечных волокон

Скелетная мышца человека состоит из волокон 3 типов, однако их соотношение может значительно отличаться в зависимости от функции мышцы, а также врожденной и приобретенной индивидуальности. Чем больше в мышцах белых волокон, тем лучше человек приспособлен к выполнению работы, требующей большой скорости и силы. Преобладание красных волокон обеспечивает выносливость при выполнении длительной работы.

Строение скелетной мышцы

Скелетная мышца состоит из множества мышечных волокон, которые расположены пучками в общем соединительнотканном футляре и крепятся к сухожилиям, связанным со скелетом. Каждое мышечное волокно – это тонкое (от 10 до 100 мкм) вытянутое в длину (от 5 до 400мм) многоядерное образование – симпласт.

Каждая миофибрилла состоит их множества параллельно лежащих толстых (миозиновых) и тонких (актиновых) белковых нитей – миофиламентов. По сечению волокна толстые и тонкие нити располагаются высокоорганизованно в узлах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых. Миозиновые нити имеют отходящие от них поперечные выступы с головками, состоящими примерно из 150 молекул миозина. Актиновая нить состоит из двух закрученных одна вокруг другой цепочек (подобно скрученным ниткам бус) молекул актина. На нитях актина расположены молекулы тропонина, а в желобках между двумя нитями актина лежат нити тропомиозина.

Читайте также:  Тянущие колющие боли в мышцах

Механизм сокращения мышечного волокна

В 1954 г. Г.Хаксли и Н.Хэнсон обнаружили, что актиновые и миозиновые филаменты не изменяют своей длины при укорочении или удлинении саркомера и вывели теорию скольжения нитей: мышечное сокращение происходит при последовательном связывании нескольких центров миозиновой головки поперечного мостика с определенными участками на актиновых филаментах.

В покоящихся мышечных волокнах молекулы тропомиозина в покое располагаются так, что предотвращают прикрепление поперечных мостиков миозина к актиновым нитям (мышца расслаблена).

Возникающий в области аксо-соматического синапса ПД распространяется по системе Т-трубочек вглубь волокна, вызывая деполяризацию цистерн саркоплазматического ретикулума (депо Са 2+ ). При активации мембраны СР происходит открытие Са-каналов и выход Са 2+ по концентрационному градиенту.

При повышении в миоплазме концентрации ионов Са 2+ он соединяется с тропонином, последний конформируется и отодвигает нить тропомиозина, открывая для миозиновой головки возможность соединения с актином. Соединение головки приводит к резкому «сгибанию» мостика и перемещению нити актина на 1 шаг (20 нм или 1% длины актина) к середине саркомера с последующим разрывом мостика.

При отсутствии повторного возбуждения концентрация Са 2+ благодаря работе Са-насоса падает. Поэтому Са 2+ отсоединяется от тропонина и тропомиозин снова блокирует актин. При этом на одно рабочее движение одного мостика тратится энергия 1 молекулы АТФ, еще одной – на возврат 2 ионов Са 2+ в цистерны.

Все это приводит к расслаблению мышцы вплоть до момента прихода очередного потока нервных импульсов, когда описанный выше процесс повторяется.

Совокупность процессов, обуславливающих распределение ПД вглубь мышечного волокна, выход ионов Са 2+ из саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называется электромеханическим сопряжением.

Механика мышцы. Физические свойства и режимы мышечных сокращений

Физические свойства скелетных мышц

1. Растяжимость— способность мышцы изменять свою длину под действием растягивающей ее силы.

4. Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т. к. снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок (закон средних нагрузок).

Режимы мышечных сокращений

Различают изотонический, изометрический и смешанный режимы сокращения мышц.

При изотоническом сокращении мышцы происходит изменение ее длины, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не перемещает груз. В естественных условиях близкими к изотоническому типу сокращений являются сокращения мышц языка.

При изометрическомсокращении длина мышечных волокон остается постоянной, меняется напряжение мышцы. Такое сокращение мышцы можно получить при попытке поднять непосильный груз.

В целом организме сокращения мышц никогда не бывают чисто изотоническим или изометрическим, они всегда имеют смешанный характер, т. е. происходит изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим если преобладает напряжение мышцы, или ауксометрическим если преобладает укорочение.

Источник

Adblock
detector