Меню

Механическая энергия работы мышц

Превращение и преобразование энергии в двигательных действиях

Биоэнергетика двигательных действий

В двигательных действиях происходит превращение одних видов энергии в другие (химической в механическую и тепловую) и преобразование механической энергии (кинетической в потенциальную и наоборот). Изучение источников энергии, путей ее перехода, условий индивидуального использования и ее потерь необ­ходимо для совершенствования систем движений.

Подвод энергии в биомеханическую систему совершается в ре­зультате: а) превращения химической энергии в механическую по­тенциальную напряженной мышцы, б) перехода работы внешних сил в кинетическую энергию биомеханической системы и потенциальную энергию деформированных мышц и перемещаемого тела. Энергия расходуется на:

а) производительную работу; б) непроизводительные затраты, связанные с ее превращением и рассеянием энергии; в) пре­образование ее при накоплении в растянутой мышце.

Механическое движение человека сопровождается изменением ме­ханического состояния его тела; это состояние определяется энергией биомеханической системы. Величина и характер расхода энергии при движениях зависят от особенностей движений. Коль скоро происходит расход энергии, необходим и подвод энергии.

Существует, по меньшей мере, два источника энергии, используемой в движениях. Первый источник — запасы химической энергии. Этот источник находится в мышцах, других органах и крови. В мышцах происходят химические реакции и возникает напряжение в сократительных элементах: химическая энергия превращается в механическую — потенциальную энергию упруго деформированных эле­ментов мышц (рис. 38,1). Второй источник энергии движений — это механическая энергия внешнего окружения (внешних тел, среды, парт­неров и противников). Она передается телу посредством работы внешних сил: а) кинетическая энергия движущихся объектов (рис. 38,2) (например, бросок, выполненный противником в борьбе) и б) потен­циальная энергия положения (рис. 38,3) (например, движение вниз

при соскоке с перекладины в поле земного тяготения), В этих случа­ях спортсмен движется пассивно. Все активные движения совер­шаются благодаря преобразова­нию потенциальной энергии на­пряженных мышц в кинетиче­скую энергию звеньев тела и всего тела в целом (рис. 38, 4). Силы тяги мышц совершают работу. Напомним, что работа силы — процесс изменения энергии (со­стояния). Всегда, когда изменяет­ся количество или форма энергии, это следствие работы сил.

Приобретенная энергия не всегда тотчас же расходуется. Не­израсходованная энергия нака­пливается. Химическая энергия «запасается» благодаря питанию и дыханию человека. Она превра­щается в механическую (потенци­альную) энергию напряженных мышц. Накопление энергии в мышцах происходит и другим путем: когда мышцы растяги­ваются в уступающей работе, тор­мозя движение звеньев тела. Кинетическая энергия последних преобразуется в потенциальную энергию упруго деформированных мышц (рис. 38, 5). Наконец, накопле­ние энергии может быть в виде потенциальной энергии тела человека, когда он поднимает себя против сил тяжести (рис. 38, 6).

А каковы же затраты механической энергии тела человека Естественно, что когда человек двигается, он затрачивает кинетиче скую энергию на передвижение своего тела и движимых им внешни тел (например, метание диска) (рис. 38,7). Работа против внешних си. идет за счет уменьшения механической энергии тела, с увеличение! кинетической энергии внешних тел. Как известно, затраты кинетиче ской энергии бывают производительными (на решение двигательно задачи) и непроизводительными (против вредных сопротивление например сил трения). Возможны затраты кинетической энергии тела как уже упоминалось, и на превращение ее в потенциальную (рис. 38,6 (например, движение вверх в висе на перекладине после маятникооб разного движения вниз). Ранее были названы способы затраты ки нетической энергии на накопление потенциальной энергии как в мышца (рекуперация 1 энергии), так и во всем теле в поле земного тяготения.

1 Рекуперация (лат.) — получение вновь (подробнее см. 24.2).

При всех изменениях энергии значительная часть ее превращается в тепловую и рассеивается (рис. 38, б). По закону сохранения энергии она не исчезает; но механическая энергия, превращаясь в тепловую, теряется в процессе механической работы. Из затрат механической энергии не более 1/4 идет на механическую работу (к.п.д. 20—25%).

Такова несколько упрощенная схема превращения и преобразования энергии при движениях человека.

Дата добавления: 2014-01-05 ; Просмотров: 4740 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Механические свойства мышц и механика мышечного сокращения.

При возбуждении мышцы изменяется ее механическое состояние; эти изменения называют сокращением. Оно проявляется в изменении натяжения и (или) длины мышцы, а также других ее механических свойств (упругости, твердости и др.). Механические свойства мышц сложны и зависят от механических свойств элементов, образующих мышцу ( мышечные волокна, соединительные образования и т. п.), и состояния мышцы (возбуждения, утомления и пр.). Упругие компоненты по механическим свойствам аналогичны пружинам: чтобы их растянуть, нужно приложить силу.

Читайте также:  Мышцы работающие при жиме над головой

Для мышц характерно также такое свойство, как релаксация — снижение силы упругой деформации с течением времени. При отталкивании в прыжках с места сразу после быстрого приседания прыжок будет выше, чем при отталкивании после паузы в низшей точке подседа: после паузы упругие силы, возникшие при быстром приседании, вследствие релаксации не используются.

Механизм сокращения мышечного волокна:

В сосстоянии покоя кальций находится на саркоплазматическом ретикулуме, тропанин перекрывает актин-миозиновые нити. Мышечные волокна находятся в расслабленном состоянии.

В состоянии работы под действием нервного импульса возникает потенциал действия на оболочке клеточной мембраны. Кальций устремляется к тропанину и образует кальций-тропаниновый комплекс. Фермент АТФаза с кальцием образуют активное состояние. Возникают связи между актином и миозином (АТФ-АДФ+энергия)

В состоянии восстановления на оболочку мембраны перестает действовать нервный импульс, кальций устремляется обратно в ретикулум, присходит ресинтез АТФ ( АДФ+АДФ=АТФ+АМФ-шлаковый) Глю-МК+2АТФ)

8) Групповое взаимодействие мышц.

9. Биомеханическая характеристика силовых качеств

10. Биомеханическая характеристика выносливости

Если человек длительное время выполняет какое-то двигательное задание, то его движения можно классифицировать:

1)- по интенсивности (скорость, мощность, сила.);

а) скорость спортсмена (Н-р в беге ед измер-я—м/с);
б) мощность (Н-р педалирование на велоэргометре [Вт];
в) сила (Н-р при статическом удержании груза [ньютоны].

2)- по объему (расстояние, количество повторений и др)

а) пройденное расстояние (бег—метры);
б) выполненная работа (при вращении педалей велоэргометра-джоули);
в) импульс силы(при статическом усилии—ньютон/сек).

3)- по времени выполнения (секунда).

Эти показатели относят к эргометрическим.

Один из них всегда задается как параметр задания; два других — измеряются. Н-р, при беге на 5км дистанция задается заранее, а время бега и средняя скорость измеряются; при часовом беге задается время, а измеряются дистанция и скорость; при беге с заданной скоростью «до отказа» измеряются дистанция и время.
Наибольшая величина энергии, освобождаемой при мышечной работе, определяется величинами:
а) максимального кислородного долга,
б) кислородной емкости.

для оценки выносливости используют термин утомление, что означает временное снижение работоспособности. Биомеханика рассматривает только физическое утомление.

Повышение устойчивости спортивной техники к утомлению является одной из важнейших задач спорта. Это достигается длительной тренировкой. Так, велосипедист высокого класса, при утомлении почти не меняет своей техники. В процессе тренировки в год он совершает 5 миллионов оборотов педалей.

11) Утомление и его биомеханические проявления

Утомлением называется вызванное работой временное снижение работоспособности.

Утомление при мышечной работе проходит через две фазы:

1) фазу компенсированного утомления — в ней, несмотря на возра­стание затруднения, спортсмен сохраняет интенсивность выполнения двигательного задания например, сжиристь плавании; на прежнем уровне;

2) фазу декомпенсированного утомления — в ней спортсмен, не­смотря на все старания, не может сохранить необходимую интенсив­ность выполнения задания.

Утомление проявляется в специфических субъективных ощущениях, объективных физиологических и биохимических сдвигах (например, в уменьшении систолического выброса, сдвиге рН крови в кислую сторону).

В фазе компенсированного утомления скорость передвижения (или другой показатель интенсивности двигательного задания) не снижается, но происходят изменения в технике движений. Снижение одних по­казателей компенсируется ростом других. Наиболее часто уменьшается длина «шагов», что компенсируется возросшей их частотой. Особенно четко эта закономерность проявляется при задании удерживать как можно дольше постоянную скорость передвижения (например, при плавании за механическим лидером или светолидером).

Под влиянием утомления снижаются скоростно-силовые показа­тели утомленных мышц. Такое снижение может до известной степени компенсироваться сознательным или бессознательным изменением техники движения. Наблюдаемые в состоянии утомления изменения в технике дви­жений имеют двоякую природу:

— изменения, вызванные утомлением,

— и приспособительные реакции, которые должны компенсировать эти изменения, а также снижение функциональных (в частности, скоростно-силовых) возможностей спортсмена.

В результате далеко не всегда ясно, полезным или вредным является то или иное изменение в технике движений при утомлении (например, меньшее сгибание ноги в коленном суставе при беге: надо ли с ним бороться или именно такой вариант исполнения в утомленном состоянии лучше других?). Повышение устойчивости спортивной техники по отношению к утомлению — одна из важных задач во многих видах спорта. Это достигается длительной специальной тренировкой (в том числе и в состоянии утомления).

Экономизация зависит от :

С биомеханической точки зрения существует два пути повышения экомомности движений:

Читайте также:  Строение мышц спины для массажа

— понижение энергозатрат в каждом цикле

— рекуперация энергии ( преобразование кинетической энергии в потенциальную и ее переход в кинетическую)

Первый путь реализуется несколькими способами:

1) устранение ненужных сокращений мышц

2) устранение ненужных движений

3)уменьшение внешнего сопротивления

4) уменьшение внутрицикловых колебаний скорости

5)выбор оптимального соотношения между силой действия и скоростью рабочих движений.

6)ритмо-темповая структура (выбор соотношения между длиной и скоростью шагов)

1)кинетическая энергия движения может переходить в потенциальную энергию гравитации (пр: бег, тройной прыжок, вращение на перекладине)

12) Выносливость и биомеханические способы ее измерения.

Если предложить одно и то же двигательное задание разным людям, признаки утомления у них появятся через разное время. Причиной этого является, очевидно, разный уровень выносливости у этих людей. Выносливостью называется способность противостоять утомлению. При прочих равных условиях у более выносливых людей наступает позже как первая, так и вторая фаза утомления. Основным мерилом выносливости считают время, в течение которого человек способен поддерживать заданную интенсивность двигательного зада­ния (В. С. Фарфель, 1937).

Выделяют 3 способа определения выносливости:

I способ. задается время выполнения работы, измеряется объем работы (расстояние), определяется скорость выполнения.

III способ: скорость выполнения постоянная, измеряется время выполнения, определяется объем работы.

Выносливостью называется способность противостоять утомлению. Основной мерой выносливости является удержание заданной интенсивности движения. 2 типа показательности выносливости: явные (абсолютные) и и латентные (относительные). Латентных показателей выносливости много. В их основе лежит сравнение эргометрических показателей в данном двигательном задании с достижением в других заданиях

Источник

Биомеханические свойства скелетных мышц человека

В третьей лекции по дисциплине «Биомеханика мышц» для студентов НГУ им. П.Ф.Лесгафта рассматриваются биомеханические свойства скелетных мышц человека: сократимость, жесткость, вязкость, прочность, релаксация. Рассмотрена трехкомпонентная модель мышцы.

Лекция 3

Биомеханические свойства скелетных мышц человека

Анализируя предмет биомеханики, А.А. Ухтомский (1927) указывал: «Биомеханика изучает ту же систему нервно-мышечных приборов как рабочую машину, то есть задается вопросом, каким образом полученная механическая энергия движения и напряжения может приобрести определенное рабочее применение» (С. 141). Начиная с этой лекции, мы будем рассматривать именно этот аспект деятельности мышц.

3.1. Биомеханические свойства мышц

Биомеханические свойства скелетных мышц – это характеристики, которые регистрируют при механическом воздействии на мышцу.

Следует отметить, что в условиях живого организма изучение биомеханических свойств мышц крайне затруднено. В этой лекции, кроме биомеханических свойств мышц, приводятся данные о свойствах сухожилий и связок.

К биомеханическим свойствам мышц относятся:

Сократимость

Сократимость – способность мышцы укорачиваться при возбуждении, в результате чего возникает сила тяги.

В первой лекции было подробно рассмотрено строение первичного сократительного элемента мышцы – саркомера. В 1966 году А. Гордон, А. Хаксли и Ф. Джулиан провели специальные исследования, позволившие установить зависимость силы, развиваемой саркомером, от его длины. Одно из предположений, касающихся механизма скольжения филаментов, заключалось в том, что каждый поперечный мостик (миозиновая головка) действует подобно независимому генератору силы. Поэтому уровень силы, развиваемой во время сокращения, должен зависеть от количества одновременных взаимодействий между толстыми и тонкими филаментами. Это предположение подтвердилось. Действительно, существуют критические значения длины саркомера, при которых развиваемая им сила падает до нуля (рис.3.1).

Рис. 3.1. Схема, иллюстрирующая зависимость между степенью перекрытия толстых и тонких филаментов и силой, развиваемой саркомером (по: A.M. Gordon, A.F. Huxley. F.J. Julian, 1966)

Первое критическое значение длины саркомера равно 1,27 мкм. Оно соответствует максимальному укорочению мышцы. В этом состоянии мышцы регулярность расположения толстого и тонкого филаментов нарушается, они искривляются. Поэтому количество одновременных взаимодействий между филаментами резко уменьшается. Сила падает до нуля. Второе критическое значение длины саркомера равно 3,65 мкм. Оно соответствует максимальному удлинению мышцы. При максимальном растяжении саркомера перекрытия толстых и тонких филаментов нет, поэтому сила уменьшается до нуля. Если длина саркомера находится в интервале от 1,27 мкм до 3,65 мкм, значение силы отличается от нуля. Максимальная сила, которую способен развить саркомер, соответствует значениям его длины – от 1,67 до 2,25 мкм.

Жесткость

Жесткость материала – характеристика тела, отражающая его сопротивление изменению формы при деформирующих воздействиях (В.Б. Коренберг, 2004). Чем больше жесткость тела, тем меньше оно деформируется под воздействием силы. Закон Гука гласит, что сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Жесткость материала характеризуется коэффициентом жесткости (k). Единица измерения жесткости тела – Н/м. Жесткость линейной упругой системы, например, пружины, есть величина постоянная на всем участке деформации.

Читайте также:  Гипертонус и гипертония мышц

В отличие от пружины, мышца представляет собой систему с нелинейными свойствами. Это связано с тем, что структура мышцы очень сложна. Поэтому для мышцы зависимость силы от удлинения будет отлична от закона Гука. Возникающая в мышце сила упругости не пропорциональна удлинению. Вначале мышца растягивается легко, а затем даже для небольшого ее растяжения необходимо прикладывать все большую силу. Поэтому часто мышцу сравнивают с трикотажным шарфом, который вначале легко растягивается, а затем становится практически нерастяжимым. Иными словами, жесткость мышцы с ее удлинением возрастает. Из этого следует, что мышца представляет собой систему, обладающую переменной жесткостью. В этом случае коэффициент жесткости k равен первой производной силы по деформации материала. Установлено, что жесткость активной мышцы в 4-5 раз больше жесткости пассивной мышцы. В табл. 3.1. представлены значения коэффициентов жесткости мышц-сгибателей стопы у представителей разных видов спорта.

Таблица 3.1 Значения коэффициента жесткости мышц-сгибателей стопы у представителей различных видов спорта

(по: А.С. Аруину, В.М. Зациорскому, Л.М. Райцину, 1977)

Вязкость

Вязкость – свойство жидкостей, газов и «пластических» тел оказывать неинерционное сопротивление перемещению одной их части относительно другой (смещение смежных слоев). При этом часть механической энергии переходит в другие виды, главным образом в тепло (В.Б. Коренберг, 1999).

Это свойство сократительного аппарата мышцы вызывает потери энергии при мышечном сокращении, идущие на преодоление вязкого трения. Предполагается, что трение возникает между толстыми и тонкими филаментами при сокращении мышцы. Кроме того, трение возникает между возбужденными и невозбужденными мышечными волокнами. Это связано с тем, что соседние мышечные волокна «связаны» посредством эндомизия. Поэтому, если возбуждены все мышечные волокна, трение должно быть меньше. Показано, что при сильном возбуждении мышцы, ее вязкость резко уменьшается (Г.В. Васюков,1967).

Если абсолютно упругое тело (например, пружину) вначале растянуть, а затем – снять деформирующую нагрузку, то кривая «удлинение – сила» будет идентичной во время обеих фаз. Если же мы имеем дело с упруговязким материалом (мышцей), кривые окажутся неидентичными. При нагрузке (растягивании мышцы) зависимость «удлинение – сила» соответствует кривой 1. Рис.3.2.

Рис. 3.2. Зависимость «удлинение – сила» при растягивании (кривая 1) и укорочении мышцы (кривая 2)

При укорочении мышцы зависимость «удлинение – сила» соответствует кривой 2. Кривые 1 и 2 образуют «петлю гистерезиса». Площадь фигуры, заключенной между кривыми 1 и 2, отражает потери энергии на трение. Мышца, обладающая большей вязкостью, будет характеризоваться большей площадью «петли гистерезиса». Вы знаете, что при выполнении физических упражнений температура мышц повышается. Повышение температуры мышц связано с наличием у мышц вязкости. Результатом наличия вязкости происходят потери энергии мышечного сокращения на трение. Разогрев мышц (разминка) приводит к тому, что вязкость мышц уменьшается.

Прочность

Прочностью материала называют его способность сопротивляться разрушению под действием внешних сил (И.Ф. Образцов с соавт., 1988).

Значительно снижает прочность связок и сухожилий иммобилизация. И, наоборот, при исследовании животных была найдена связь между уровнем физической активности и прочностью сухожилий и связок. Показано, что в подавляющем большинстве случаев прочность сухожилий более высока, чем прочность их прикрепления к костям. Поэтому при травмах сухожилий они не разрываются, а отрываются от места прикрепления. Следует учитывать также, что в процессе тренировок прочность сухожилий и связок увеличивается сравнительно медленно. При форсированном развитии скоростно-силовых качеств мышц может возникнуть несоответствие между возросшими скоростно-силовыми возможностями мышечного аппарата и недостаточной прочностью сухожилий и связок. Это грозит потенциальными травмами (А.С. Аруин, В.М. Зациорский, В.Н. Селуянов, 1981).

Релаксация

Релаксация мышц – свойство, проявляющееся в уменьшении с течением времени силы тяги при постоянной длине.

Для оценки релаксации используют показатель – время релаксации, то есть отрезок времени, в течение которого натяжение мышцы уменьшается в е раз от первоначального значения. Многочисленными исследованиями установлено, что высота выпрыгивания вверх с места зависит от длительности паузы между приседанием и отталкиванием. Чем больше эта пауза (изометрический режим работы мышц), тем меньше сила их тяги и, как следствие, высота выпрыгивания, табл. 3.2. Таким образом, релаксация мышц приводит к уменьшению высоты выпрыгивания.

Таблица 3.2 Влияние паузы на высоту прыжка с места (n = 31) (по: А.С. Аруин, В.М. Зациорский, Л.М. Райцин, 1977)

Источник

Adblock
detector