Меню

Механические фазы сокращения мышц

Механические свойства мышц и механика мышечного сокращения.

При возбуждении мышцы изменяется ее механическое состояние; эти изменения называют сокращением. Оно проявляется в изменении натяжения и (или) длины мышцы, а также других ее механических свойств (упругости, твердости и др.). Механические свойства мышц сложны и зависят от механических свойств элементов, образующих мышцу ( мышечные волокна, соединительные образования и т. п.), и состояния мышцы (возбуждения, утомления и пр.). Упругие компоненты по механическим свойствам аналогичны пружинам: чтобы их растянуть, нужно приложить силу.

Для мышц характерно также такое свойство, как релаксация — снижение силы упругой деформации с течением времени. При отталкивании в прыжках с места сразу после быстрого приседания прыжок будет выше, чем при отталкивании после паузы в низшей точке подседа: после паузы упругие силы, возникшие при быстром приседании, вследствие релаксации не используются.

Механизм сокращения мышечного волокна:

В сосстоянии покоя кальций находится на саркоплазматическом ретикулуме, тропанин перекрывает актин-миозиновые нити. Мышечные волокна находятся в расслабленном состоянии.

В состоянии работы под действием нервного импульса возникает потенциал действия на оболочке клеточной мембраны. Кальций устремляется к тропанину и образует кальций-тропаниновый комплекс. Фермент АТФаза с кальцием образуют активное состояние. Возникают связи между актином и миозином (АТФ-АДФ+энергия)

В состоянии восстановления на оболочку мембраны перестает действовать нервный импульс, кальций устремляется обратно в ретикулум, присходит ресинтез АТФ ( АДФ+АДФ=АТФ+АМФ-шлаковый) Глю-МК+2АТФ)

8) Групповое взаимодействие мышц.

9. Биомеханическая характеристика силовых качеств

10. Биомеханическая характеристика выносливости

Если человек длительное время выполняет какое-то двигательное задание, то его движения можно классифицировать:

1)- по интенсивности (скорость, мощность, сила.);

а) скорость спортсмена (Н-р в беге ед измер-я—м/с);
б) мощность (Н-р педалирование на велоэргометре [Вт];
в) сила (Н-р при статическом удержании груза [ньютоны].

2)- по объему (расстояние, количество повторений и др)

а) пройденное расстояние (бег—метры);
б) выполненная работа (при вращении педалей велоэргометра-джоули);
в) импульс силы(при статическом усилии—ньютон/сек).

3)- по времени выполнения (секунда).

Эти показатели относят к эргометрическим.

Один из них всегда задается как параметр задания; два других — измеряются. Н-р, при беге на 5км дистанция задается заранее, а время бега и средняя скорость измеряются; при часовом беге задается время, а измеряются дистанция и скорость; при беге с заданной скоростью «до отказа» измеряются дистанция и время.
Наибольшая величина энергии, освобождаемой при мышечной работе, определяется величинами:
а) максимального кислородного долга,
б) кислородной емкости.

для оценки выносливости используют термин утомление, что означает временное снижение работоспособности. Биомеханика рассматривает только физическое утомление.

Повышение устойчивости спортивной техники к утомлению является одной из важнейших задач спорта. Это достигается длительной тренировкой. Так, велосипедист высокого класса, при утомлении почти не меняет своей техники. В процессе тренировки в год он совершает 5 миллионов оборотов педалей.

11) Утомление и его биомеханические проявления

Утомлением называется вызванное работой временное снижение работоспособности.

Утомление при мышечной работе проходит через две фазы:

1) фазу компенсированного утомления — в ней, несмотря на возра­стание затруднения, спортсмен сохраняет интенсивность выполнения двигательного задания например, сжиристь плавании; на прежнем уровне;

2) фазу декомпенсированного утомления — в ней спортсмен, не­смотря на все старания, не может сохранить необходимую интенсив­ность выполнения задания.

Утомление проявляется в специфических субъективных ощущениях, объективных физиологических и биохимических сдвигах (например, в уменьшении систолического выброса, сдвиге рН крови в кислую сторону).

Читайте также:  Характеристика возбудимости сердечной мышцы

В фазе компенсированного утомления скорость передвижения (или другой показатель интенсивности двигательного задания) не снижается, но происходят изменения в технике движений. Снижение одних по­казателей компенсируется ростом других. Наиболее часто уменьшается длина «шагов», что компенсируется возросшей их частотой. Особенно четко эта закономерность проявляется при задании удерживать как можно дольше постоянную скорость передвижения (например, при плавании за механическим лидером или светолидером).

Под влиянием утомления снижаются скоростно-силовые показа­тели утомленных мышц. Такое снижение может до известной степени компенсироваться сознательным или бессознательным изменением техники движения. Наблюдаемые в состоянии утомления изменения в технике дви­жений имеют двоякую природу:

— изменения, вызванные утомлением,

— и приспособительные реакции, которые должны компенсировать эти изменения, а также снижение функциональных (в частности, скоростно-силовых) возможностей спортсмена.

В результате далеко не всегда ясно, полезным или вредным является то или иное изменение в технике движений при утомлении (например, меньшее сгибание ноги в коленном суставе при беге: надо ли с ним бороться или именно такой вариант исполнения в утомленном состоянии лучше других?). Повышение устойчивости спортивной техники по отношению к утомлению — одна из важных задач во многих видах спорта. Это достигается длительной специальной тренировкой (в том числе и в состоянии утомления).

Экономизация зависит от :

С биомеханической точки зрения существует два пути повышения экомомности движений:

— понижение энергозатрат в каждом цикле

— рекуперация энергии ( преобразование кинетической энергии в потенциальную и ее переход в кинетическую)

Первый путь реализуется несколькими способами:

1) устранение ненужных сокращений мышц

2) устранение ненужных движений

3)уменьшение внешнего сопротивления

4) уменьшение внутрицикловых колебаний скорости

5)выбор оптимального соотношения между силой действия и скоростью рабочих движений.

6)ритмо-темповая структура (выбор соотношения между длиной и скоростью шагов)

1)кинетическая энергия движения может переходить в потенциальную энергию гравитации (пр: бег, тройной прыжок, вращение на перекладине)

12) Выносливость и биомеханические способы ее измерения.

Если предложить одно и то же двигательное задание разным людям, признаки утомления у них появятся через разное время. Причиной этого является, очевидно, разный уровень выносливости у этих людей. Выносливостью называется способность противостоять утомлению. При прочих равных условиях у более выносливых людей наступает позже как первая, так и вторая фаза утомления. Основным мерилом выносливости считают время, в течение которого человек способен поддерживать заданную интенсивность двигательного зада­ния (В. С. Фарфель, 1937).

Выделяют 3 способа определения выносливости:

I способ. задается время выполнения работы, измеряется объем работы (расстояние), определяется скорость выполнения.

III способ: скорость выполнения постоянная, измеряется время выполнения, определяется объем работы.

Выносливостью называется способность противостоять утомлению. Основной мерой выносливости является удержание заданной интенсивности движения. 2 типа показательности выносливости: явные (абсолютные) и и латентные (относительные). Латентных показателей выносливости много. В их основе лежит сравнение эргометрических показателей в данном двигательном задании с достижением в других заданиях

Источник

Механические фазы сокращения мышц

Выделяют несколько последовательных этапов запуска и осуществления мышечного сокращения.
1. Потенциал действия распространяется вдоль двигательного нервного волокна до его окончаний на мышечных волокнах.
2. Каждое нервное окончание секретирует небольшое количество нейромедиатора ацетилхолина.
3. Ацетилхолин действует на ограниченную область мембраны мышечного волокна, открывая многочисленные управляемые ацетилхолином каналы, проходящие сквозь белковые молекулы, встроенные в мембрану.
4. Открытие управляемых ацетилхолином каналов позволяет большому количеству ионов натрия диффундировать внутрь мышечного волокна, что ведет к возникновению на мембране потенциала действия.

Читайте также:  Упражнения при растяжении мышц голени

5. Потенциал действия проводится вдоль мембраны мышечного волокна так же, как и по мембране нервного волокна.
6. Потенциал действия деполяризует мышечную мембрану, и большая часть возникающего при этом электричества течет через центр мышечного волокна. Это ведет к выделению из саркоплазматического ретикулума большого количества ионов кальция, которые в нем хранятся.
7. Ионы кальция инициируют силы сцепления между актиновыми и миозиновыми нитями, вызывающие скольжение их относительно друг друга, что и составляет основу процесса сокращения мыщц.
8. Спустя долю секунды с помощью кальциевого насоса в мембране саркоплазматического ретикулума ионы кальция закачиваются обратно и сохраняются в ретикулуме до прихода нового потенциала действия. Удаление ионов кальция от миофибрилл ведет к прекращению мышечного сокращения.

Далее мы обсудим молекулярные механизмы этого процесса.
На рисунке показан основной механизм мышечного сокращения. Показано расслабленное состояние саркомера (вверху) и сокращенное состояние (внизу). В расслабленном состоянии концы актиновых нитей, отходящие от двух последовательных Z-дисков, лишь незначительно перекрываются. Наоборот, в сокращенном состоянии актиновые нити втягиваются внутрь между миозиновыми так сильно, что их концы максимально перекрывают друг друга. При этом Z-диски притягиваются актиновыми нитями к концам миозиновых. Таким образом, мышечное сокращение осуществляется путем механизма скольжения нитей.

Что заставляет нити актина скользить внутрь среди нитей миозина? Это связано с действием сил, генерируемых при взаимодействии поперечных мостиков, исходящих от нитей миозина, с нитями актина. В условиях покоя эти силы не проявляются, однако распространение потенциала действия вдоль мышечного волокна приводит к выделению из саркоплазматическо-го ретикулума большого количества ионов кальция, которые быстро окружают миофи-бриллы. В свою очередь, ионы кальция активируют силы взаимодействия между нитями актина и миозина, в результате начинается сокращение. Для осуществления процесса сокращения необходима энергия. Ее источником являются высокоэнергетические связи молекулы АТФ, которая разрушается до АДФ с высвобождением энергии. В следующих разделах мы приведем известные детали молекулярных процессов сокращения.

Миозиновая нить. Она состоит из множества молекул миозина, молекулярная масса каждой составляет около 480000. На рисунке показана отдельная молекула; и также — объединение многих молекул миозина в миозиновую нить, а также взаимодействие одной стороны этой нити с концами двух актиновых нитей.

В состав молекулы миозина входят 6 полипептидных цепей: 2 тяжелые цепи с молекулярной массой около 200000 каждая и 4 легкие цепи с молекулярной массой около 20000 каждая. Две тяжелые цепи спирально закручиваются вокруг друг друга, формируя двойную спираль, которую называют миозиновым хвостом. С одного конца обе цепи изгибаются в противоположных направлениях, формируя глобулярную полипептидную структуру, называемую миозиновой головкой. Таким образом, на одном конце двойной спирали молекулы миозина образуются 2 свободные головки; 4 легкие цепи также включены в состав миозиновой головки (по 2 в каждой). Они помогают регулировать функцию головки во время мышечного сокращения.

Миозиновая нить состоит из 200 или более отдельных молекул миозина. Видно, что хвосты молекул миозина объединяются, формируя тело нити, а многочисленные головки молекул выдаются наружу по сторонам тела. Кроме того, наряду с головкой в сторону выступает часть хвоста каждой миозиновой молекулы, образуя плечОу которое выдвигает головку наружу от тела, как показано на рисунке. Выступающие плечи и головки вместе называют поперечными мостиками. Каждый поперечный мостик может сгибаться в двух точках, называемых шарнирами. Один из них расположен в месте, где плечо отходит от тела миозиновой нити, а другой — где головка крепится к плечу. Движение плеча позволяет головке или выдвигаться далеко наружу от тела миозиновой нити, или приближаться к телу. В свою очередь, повороты головки участвуют в процессе сокращения, что обсуждается в следующих разделах.

Читайте также:  Почему болят мышцы передней поверхности бедра

Общая длина каждой миозиновой нити остается постоянной и равна почти 1,6 мкм. В самом центре миозиновой нити на протяжении 0,2 мкм поперечных мостиков нет, поскольку снабженные шарнирами плечи отходят в стороны от центра.

Сама миозиновая нить сплетена таким образом, что каждая последующая пара поперечных мостиков смещена в продольном направлении относительно предыдущей на 120°, что обеспечивает распределение поперечных мостиков во всех направлениях вокруг нити.

АТФ-азная активность миозиновой головки. Есть и другая особенность миозиновой головки, необходимая для мышечного сокращения: миозиновая головка функционирует как фермент АТФ-аза. Как объясняется далее, это свойство позволяет головке расщеплять АТФ и использовать энергию расщепления высокоэнергетической связи для процесса сокращения.
Актиновая нить. Актиновая нить состоит из трех белковых компонентов: актина, тропомиозина и тропонина.
Основой актиновой нити являются две цепи белковой молекулы F-актина. Обе цепи закручиваются в спираль так же, как и молекула миозина.

Каждая цепь двойной спирали F-актина состоит из полимеризованных молекул G-актина с молекулярной массой около 42000. К каждой молекуле G-актина прикреплена 1 молекула АДФ. Полагают, что эти молекулы АДФ являются активными участками на актиновых нитях, с которыми взаимодействуют поперечные мостики миозиновых нитей, обеспечивая мышечное сокращение. Активные участки на обеих цепях F-актина двойной спирали расположены со смещением таким образом, что вдоль всей поверхности актиновой нити встречается один активный участок примерно через каждые 2,7 нм.

Длина каждой актиновой нити — около 1 мкм. Основания актиновых нитей прочно встроены в Z-диски; концы этих нитей выступают в обоих направлениях, располагаясь в пространствах между миозиновыми молекулами.

Молекулы тропомиозина. Актиновая нить также содержит другой белок — тропомиозин. Каждая молекула тропомиозина имеет молекулярную массу 70000 и длину 40 нм. Эти молекулы спирально оплетают спираль из F-актина. В состоянии покоя молекулы тропомиозина располагаются поверх активных участков актиновых нитей, препятствуя их взаимодействию с миозиновыми нитями, лежащему в основе сокращения.

Тропонин и его роль в мышечном сокращении. По ходу молекул тропомиозина к ним периодически прикреплены другие белковые молекулы, называемые тропонином. Они представляют собой комплексы трех слабосвязанных белковых субъединиц, каждая из которых играет специфическую роль в регуляции мышечного сокращения. Одна из субъединиц (тропонин I) имеет высокое сродство к актину, другая (тропонин Т) — к тропомиозину, третья (тропонин С) — к ионам кальция. Считают, что этот комплекс прикрепляет тропомиозин к актину. Высокое сродство тропонина к ионам кальция, как полагают, инициирует процесс сокращения, о чем говорится в следующей статье.

— Вернуться в оглавление раздела «Физиология человека.»

Источник

Adblock
detector