Меню

Механические свойства мышц упругие свойства мышц

Механические свойства мышц

Механические свойства мышц

Основная функция мышц состоит в преобразовании химической энергии в механическую работу или силу. Главными биомеханическими показателями, характеризующими деятельность мышцы, являются: а) сила, регистрируемая на ее конце (эту силу называют натяжением или силой тяги мышцы)1, и б) скорость изменения длины.
При возбуждении мышцы изменяется ее механическое состояние; эти изменения называют сокращением. Оно проявляется в изменении натяжения и (или) длины мышцы, а также других ее механических свойств (упругости, твердости и др.).
Механические свойства мышц сложны и зависят от механических свойств элементов, образующих мышцу (мышечные волокна, соединительные образования и т. п.), и состояния мышцы (возбуждения, утомления и пр.).
Понять многие из механических свойств мышцы помогает упрощенная модель ее строения — в виде комбинации упругих и сократительных компонентов (рис. 12). Упругие компоненты по механическим свойствам аналогичны пружинам: чтобы их растянуть, нужно приложить силу. Работа силы равна энергии упругой деформации, которая может в следующей фазе движения перейти в механическую работу. Различают: а) параллельные упругие компоненты (ПарК) — соединительнотканные образования, составляющие оболочку мышечных волокон и их пучков, и б) последовательные упругие компоненты (ПосК) — сухожилия мышцы, места перехода миофибрилл в соединительную ткань, а также отдельные участки саркомеров, точная локализация которых в настоящее время неизвестна.
Сократительные (контрактильные) компоненты соответствуют тем участкам саркомеров мышцы, где актиновые и миозиновые миофи-ламенты перекрывают друг друга. В этих участках при возбуждении мышцы происходит механическое взаимодействие между актиновыми и миозиновыми филаментами, приводящее к изменению натяжения и длины мышцы.
Поскольку каждая миофибрилла состоит из большого числа (n) последовательно расположенных саркомеров, то величина и скорость изменения длины миофибриллы в п раз больше, чем у одного саркомера. Сила, развиваемая каждым из них, одинакова и равна силе, регистрируемой на конце миофибриллы (подобно тому, как равны силы в каждом из звеньев цепи, к концам которой приложены растягивающие силы). Эти же самые n саркомеров, соединенные параллельно (что соответствует большему числу миофибрилл), дали бы и-кратное увеличение в силе, но при этом скорость изменения длины мышцы была бы той же, что и скорость одного саркомера. Поэтому при прочих равных условиях увеличение физиологического поперечника мышцы привело бы к увеличению ее силы, но не изменило бы скорости укорочения, и наоборот, увеличение длины мышцы сказалось бы положительно на скорости сокращения, но не повлияло бы на ее силу.
Покоящаяся мышца обладает упругими свойствами: если к ее концу приложена внешняя сила, мышца растягивается (ее длина увеличивается), а после снятия внешней нагрузки восстанавливает свою исходную длину. Зависимость между величиной нагрузки и удлинением мышцы непропорциональна (не подчиняется закону Гука)

Сначала мышца растягивается легко, а затем даже для небольшого удлинения надо прикладывать все большую силу (иногда мышцу в этом отношении сравнивают с вязаными вещами: если растягивать, скажем, трикотажный шарф, то вначале он легко изменяет свою длину, а затем становится практически нерастяжимым).
Если мышцу растягивать повторно через небольшие интервалы Времени, то ее длина увеличится больше, чем при однократном «содействии. Это свойство мышц широко используется в практике при выполнении упражнений на гибкость (пружинистые движения, повторные махи и т. п.).
Длина, которую стремится принять мышца, будучи освобожденной от всякой нагрузки, называется равновесной (или свободной. При такой длине мышцы ее упругие силы равны нулю. В живом организме длина мышцы всегда несколько больше равновесной и поэтому даже расслабленные мышцы сохраняют некоторое натяжение.
При растягивании мышцы больше равновесной длины появляются упругие силы в параллельных, упругих компонентах.
Если при длине, превышающей равновесную, мышца сокращается, то сила, которую проявляют контрактильные элементы, складывается с силой упругой деформации ПарК, и суммарная сила тяги мышцы увеличивается. Поэтому при длине выше равновесной сила мышцы при сокращении больше.
Чем больше в мышце соединительнотканных образований, тем раньше при ее растягивании возникают упругие силы ПарК и тем больше их вкладе суммарное напряжение возбужденной мышцы. Так, например, большинство мышц нижних конечностей, где соединительнотканных образований и перистых мышц с угловым расположением
волокон существенно больше, чем в мышцах верхних конечностей, приближается к типу, указанному на рис. 13, а, мышцы верхних конечностей — к типу на рис. 13, б.
С уменьшением длины мышцы сила ее тяги падает, а сила контрактильных компонентов падает также и при значительном удлинении мышцы. Это происходит потому, что максимальную силу контрактильные компоненты проявляют при наибольшей величине перекрытия активных участков актиномиозиновых филаментов. При уменьшении или увеличении длины мышцы площадь перекрытия и соответственно число поперечных мостиков, образующихся между миозиновыми и актиновыми нитями, уменьшается, соответственно падает и сила.
Длину мышцы, при которой сила контрактильных компонентов максимальна, называют длиной покоя
Если к возбужденной мышце, длина которой меньше равновесной, прикладывается большая внешняя сила (например, при постановке ноги на опору в беге), то мышца растягивается и в ней возникают упругие силы. Так как длина ПарК не превышает при этом равновесной длины, основной вклад в данном случае вносит последовательная упругая компонента (ПосК). Из-за наличия в мышце параллельных и последовательных упругих компонент упругие силы в ней могут возникать при любой ее длине (например, при отталкивании в беге или взятии штанги на грудь, хотя длина мышц-разгибателей ног при этом далека от максимально возможной).
Для мышц характерно также такое свойство, как релаксация — снижение силы упругой деформации с течением времени. При отталкивании в прыжках с места сразу после быстрого приседания прыжок будет выше, чем при отталкивании после паузы в низшей точке подседа: после паузы упругие силы, возникшие при быстром приседании, вследствие релаксации не используются.

Читайте также:  Когда начинают сдуваться мышцы

Источник

Механические свойства мышц

Биодинамика мышц.

Основное назначение мышцы- преобразование химической энергии в механическую работу, которая необходима для перемещения звеньев тела.

Главными биомеханическими показателями, характеризующими деятельность мышц,

Физиологически мышца может находиться в пассивном и активном состояниях.

Мышца не является ни чисто упругим, ни чисто вязким элементом. Мышца вязко –упру-

гий элемент, вязко- уругая среда, для которой справедливы законы классической механики. Фундаментальными понятиями механики сплошных сред являются: упругость,

Рассмотрим некоторые из них.

1. Упругость-свойство тел менять свои размеры и форму под действием внешних сил и

Самопроизвольно их восстанавливать при прекращении внешних воздействий. Упругость тел обусловлена силами взаимодействия атомов и молекул.

2. Вязкость-внутреннее трение среды.

3. Деформация-относительное изменение длины.

Упругая деформация возникает и исчезает одновременно с нагрузкой и не сопровождается рассеянием энергии.

Для упругой деформации справедлив закон Гука :

Значения Е для различных материалов приведены в таблице 1.

Эластин- упругий белок; находится преимущественно в стенках артерий. Коллаге- волокнистый белок; в мышцах примерно 20% всех белков приходится на коллаген.

В случае вязкой среды напряжение ( ) определяется скоростью деформации

Для вязко- упругой деформации характерна явная зависимость от скорости деформации. При снятии нагрузки деформация с течением времени самопроизвольно стремится к нулю.

Следовательно, значительные напряжения в мышце, близкие к пределу ее прочности, могут возникать только по причине высокой скорости растяжения.при умеренных величинах деформации.

6. Жесткость- это способность мышцы противодействовать прикладываемым силам. Определяется как отношение приращения восстанавливающей силы к приращению длины мышцы под действием внешней силы.

7.Релаксация- свойство мышцы, проявляющееся в постепенном уменьшении силы тяги при постоянной длине мышцы.

Рис 1 Кривая Хилла. Рис 2 Гистерезис взаимосвязи

Источник

Механические свойства мышц

Мышца как орган тела человека, состоящий из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов. Механические свойства биологических тканей и их разновидности. Основные материалы опорно-двигательного аппарата.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 13.03.2016
Размер файла 273,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

мышца биологический ткань

1. Деформация биологических тканей

2. Механические свойства мышц

3. Механические свойства костной ткани

5. Механические свойства стенки кровеносных сосудов

Под механическими свойствами биологических тканей понимают две их разновидности. Одна связана с процессами биологической подвижности: сокращение мышц, рост клеток, движение хромосом к клетках при их деление и т. д. Условно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность- пассивные механические свойства биологических тел. Как технический объект биологическая ткань- композиционный материал, он образован объемным сочетанием химических разнородных компонентов. Виды биологических тканей : кожа, мышцы, костная ткань и ткань кровеносных сосудов( сосудистая ткань).

Мышцы. В состав мышц входит соединительная ткань, состоящая из волокон коллагена и эластина. Поэтому механичсекие свойства мышц подобны механических свойствам полимеров.

Сосудистая ткань. Механические свойства кровеносных сосудов определяется свойствами коллагена, эластина и гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы: отношение эластина к коллагену в сонной артерии 2:1, а в бедренной артерии 1:2.

1. Деформация биологических тканей

Под влиянием механических воздействий (природных и искусственных) в биологических тканях, органах и системах появляется механическое движение, распространяются волны, возникают деформации и напряжения.

Физиологическая реакция на эти факторы зависит от механических свойств биологических тканей и жидкостей. Биологические ткани, обладают сложной анизотропной структурой, зависящей от функций, для которых они предназначены. Эту удивительную оптимальную структуру можно увидеть в конструкции костей нижних конечностей или в миокарде, которые армированы высокочастотными волокнами в окружных и спиральных перекрещивающихся направлениях. Биологические ткани испытывают обычно большие деформации. Зависимость между силами и удлинениями, соответственно между напряжениями и деформациями, устанавливается экспериментальным образом и имеет нелинейный характер.

Читайте также:  Должны ли болеть мышцы ног после приседаний

Изменение взаимного положения точек называют деформацией. Деформации могут быть вызваны внешними воздействиями или изменением температуры.

Напряжением называют силу упругости, отнесенную к площади поперечного сечения тела:

Упругие деформации подчиняются закону Гука, согласно которому напряжение пропорционально относительной деформации:

Закон Гука обычно справедлив при малых деформациях. Экспериментальная кривая растяжения приведена на рисунке.

Биологические структуры, такие как мышцы, сухожилия, кровеносные сосуды, легочная ткань и др., представляют собой вязкоупругие или упруговязкие системы. Их пассивные механические свойства, то есть свойства, проявляющиеся при действии внешней силы, можно промоделировать сочетанием упругих и вязких элементов.

Примером чисто упругого элемента служит идеально упругая пружина, в которой процесс деформации происходит “мгновенно” и подчиняется закону Гука:

биологическая ткань биомеханика организм

2. Механические свойства мышц

Механические свойства мышц

Основная функция мышц состоит в преобразовании химической энергии в механическую работу или силу. Главными биомеханическими показателями, характеризующими деятельность мышцы, являются: а) сила, регистрируемая на ее конце (эту силу называют натяжением или силой тяги мышцы) и б) скорость изменения длины.

При возбуждении мышцы изменяется ее механическое состояние; эти изменения называют сокращением. Оно проявляется в изменении натяжения и длины мышцы, а также других ее механических свойств (упругости, твердости и др.).

Механические свойства мышц сложны и зависят от механических свойств элементов, образующих мышцу (мышечные волокна, соединительные образования и т.п.), и состояния мышцы (возбуждения, утомления и пр.).

Сократительные (контрактильные) компоненты соответствуют тем участкам саркомеров мышцы, где актиновые и миозиновые миофиламенты перекрываютдруг друга. В этих участках при возбуждении мышцы происходит механическое взаимодействие между актиновыми и миозиновыми филаментами, приводящее к изменению натяжения и длины мышцы.

Поскольку каждая миофибрилла состоит из большого числа (n) последовательно расположенных саркомеров, то величина и скорость изменения длины миофибриллы в п раз больше, чем у одного саркомера. Сила, развиваемая каждым из них, одинакова и равна силе, регистрируемой на конце миофибриллы (подобно тому, как равны силы в каждом из звеньев цепи, к концам которой приложены растягивающие силы). Эти же самые n саркомеров, соединенные параллельно (что соответствует большему числу миофибрилл), дали бы кратное увеличение в силе, но при этом скорость изменения длины мышцы была бы той же, что и скорость одного саркомера. Поэтому при прочих равных условиях увеличение физиологического поперечника мышцы привело бы к увеличению ее силы, но не изменило бы скорости укорочения, и наоборот, увеличение длины мышцы сказалось бы положительно на скорости сокращения, но не повлияло бы на ее силу.

Покоящаяся мышца обладает упругими свойствами: если к ее концу приложена внешняя сила, мышца растягивается (ее длина увеличивается), а после снятия внешней нагрузки восстанавливает свою исходную длину. Зависимость между величиной нагрузки и удлинением мышцы непропорциональна (не подчиняется закону Гука)

Сначала мышца растягивается легко, а затем даже для небольшого удлинения надо прикладывать все большую силу (иногда мышцу в этом отношении сравнивают с вязаными вещами: если растягивать, скажем, трикотажный шарф, то вначале он легко изменяет свою длину, а затем становится практически нерастяжимым).

Если мышцу растягивать повторно через небольшие интервалы Времени, то ее длина увеличится больше, чем при однократном «содействии. Это свойство мышц широко используется в практике при выполнении упражнений на гибкость (пружинистые движения, повторные махи и т.п.).

Длина, которую стремится принять мышца, будучи освобожденной от всякой нагрузки, называется равновесной (или свободной). При такой длине мышцы ее упругие силы равны нулю. В живом организме длина мышцы всегда несколько больше равновесной и поэтому даже расслабленные мышцы сохраняют некоторое натяжение.

3. Механические свойства костной ткани

Нагрузки, вызывающие изгиб, обычно встречаются, когда кости выполняют роль рычагов. В этих случаях приложенные к ним силы мышц и силы сопротивления направлены поперек костей и вызывают изгиб. Нагрузки, обуславливающие кручение, чаще всего встречаются при вращательных движениях звена вокруг продольной оси.

Соединение звеньев. Соединения костных звеньев обусловливают многообразие возможностей движений. От способа соединения и участия мышц в движениях зависит их направление и размах (пространственная форма движений).Степени свободы движения. Суставы, связывая в единое целое части тела, сохраняют возможности для их движений. Если часть тела может двигаться только по одной траектории, причем возможности движений по всем остальным траекториям ограничиваются связями, в механике говорят об одной степени свободы, или о степени подвижности. Совершенно свободное тело имеет шесть степеней свободы. Оно может вращаться вокруг трех основных взаимно перпендикулярных осей, а также двигаться вдоль каждой из этих осей.

Читайте также:  Потянул мышцу спины между лопатками

Если закрепить тело в одной точке, то у него остается только три степени свободы: оно может вращаться вокруг этой точки в трех основных направлениях (плоскостях). При закреплении тела еще в одной точке оно как бы насаживается на ось, соединяющую обе данные точки. В этом случае сохраняется лишь одна степень свободы: тело может вращаться лишь вокруг оси, проходящей через обе закрепленные точки.

Если же закрепить тело и в третьей точке, не лежащей на одной прямой с остальными двумя точками, то оно потеряет последнюю степень свободы: будет закреплено неподвижно.

Возможности движений отдельных точек тела при закреплении тела несколько иные. При одной закрепленной точке любая точка этого тела имеет только две степени свободы, т.е. она может двигаться только в двух направлениях по шаровой поверхности. При двух закрепленных точках тела у любой его точки будет лишь одна степень свободы, т.е. возможна одна траектория движения. Само собой разумеется, что у тела, закрепленного в трех точках, нет ни одной степени свободы. У совершенно свободного тела любая точка имеет всего три степени свободы, т.е. может двигаться в любом из трех направлений трехмерного пространства.

Понятие о степенях свободы поможет разобраться в вопросе о подвижности частей тела. Несколько подвижно соединенных звеньев составляет кинематические пары и цепи.

В каждом соединении незамкнутой цепи возможны изолированные движения. Они геометрически независимы от движений в других соединениях (если не учитывать взаимодействия мышц). Например, свободные конечности, когда их концевые звенья свободны, представляют незамкнутые цепи. Замкнутыми кинематическими цепями в теле человека являются, например, грудина, ребро, позвоночник, ребро и снова грудина.

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

Для тонкого растяжимого стержня закон Гука имеет вид:

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины ) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

то закон Гука для относительных величин запишется как

В такой форме он справедлив для любых малых объёмов материала.

Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

5. Механические свойства стенки кровеносных сосудов

Эластические свойства артерий и вен являются весьма важным фактором, влияющим на деятельность сердечно-сосудистой системы, так как эти сосуды могут функционировать как резервуары, и в них могут быть накоплены существенные количества крови.
Эластические свойства сосудов или отделов сосудистой системы часто характеризуются такой величиной, как растяжимость (С), которая отражает, насколько изменяется их объем ( V) в ответ на определенное изменение трансмурального давления (Р):

Трансмуральное давление представляет собой разность между внутренним и внешним давлением на сосудистую стенку.

Артерии играют важную роль в превращении пульсирующего потока крови, изгоняемого из сердца, в постоянный поток через сосудистое русло системных органов. С этой точки зрения, артерии выполняют функцию буфера. В начале фазы быстрого изгнания объем артериальной крови увеличивается, так как кровь поступает в 1 аорту быстрее, чем она проходит в просвет системных артериол. Таким образом, часть той работы, которую сердце выполняет при выбросе крови, уходит на растяжение эластических стенок артерий. Ближе к концу систолы и на протяжении диастолы, артериальный объем уменьшается, поскольку кровоток, выходящий из артерий, превышает кровоток, поступающий в аорту. Находящаяся в растянутом состоянии артериальная стенка сокращается и при этом утрачивает накопленную потенциальную энергию. Данная энергия, перешедшая из одной формы в другую, и обеспечивает работу по продвижению крови через периферическое сосудистое русло во время диастолы. Если бы артерии представляли собой жесткие трубки, не способные аккумулировать энергию за счет эластического растяжения, артериальное давлением немедленно падало бы до нуля при окончании процесса каждого сердечного выброса.

6. Механические свойства кожи

Дерма в большей степени ответственна за механическую прочность кожи; эпидермис важен, прежде всего, для сохранения воды.

На рис. 17 показана структура дермы до (а) и после (б) растяжения в горизонтальном направлении. Данные получены с помощью сканирующего электронного микроскопа, при увеличении 400х. Из рисунка видно, что первоначально слабо упорядоченная укладка волокон при растяжении становится упорядоченной и направленной вдоль действующей силы.

Для количественной оценки степени акустической анизотропии используется коэффициент анизотропии (K), который вычисляется по формуле:

Коэффициент анизотропии положителен (K+), если Vy > Vx, при отрицателен (K-) при Vy

Источник

Adblock
detector