Меню

Механизм сокращения скелетных мышц электромеханическое сопряжение

Регулирующая роль ионов кальция в мышечном сокращении. Электромеханическое сопряжение.

Для обеспечения молекулярного механизма взаимодействия актиновых и миозиновых нитей необходимы как макроэрги, так и ионы кальция. Именно Са 2+ является важнейшим компонентом электромеханического сопряжения.

Сигналом к сокращению скелетной мышцы являются нервные импульсы, поступающие из спинного или головного мозга к нервно-мышечному соединению. Далее следует синаптическая передача с участием ацетилхолина. Потенциалы действия, образовавшиеся на сарколемме распространяются по всей плазматической мембране мышечного волокна. Деполяризация распространяется и на мембраны саркоплазматического ретикулума СПС и открывает в ней потенциалзависимые кальциевые каналы. Через открывшиеся каналы Са 2+ пассивно (в сторону более низкого электрохимического потенциала) устремляется из цистерн СПС в саркоплазму и достигает миофибрилл. Около них создается достаточная для замыкания миозиновых мостиков концентрация ионов кальция. Дальше возникает сокращение (рисунок 5).

Саркоплазматическая сеть расположена поблизости от миофибрилл, причем в электромеханическом сопряжении важнейшую роль играют ее цистерны, примыкающие к Z-дискам (рисунок 6). Здесь же находятся впячивания сарколеммы внутрь волокна, имеющему форму трубочек (Т). Они образуются за счет того, что сарколемма во многих местах «ныряет» вглубь и заканчивается в саркоплазме слепыми концами наподобие пальцев вывернутой перчатки. В зоне Z-диска каждая трубочка (Т) вместе с двумя соседними цистернами СПС образует так называемую Т-систему. Цистернами окружают каждую миофибриллу. Т-система с миофибриллой служат основным звеном в электромеханическом сопряжении.

При получении сигнала к сокращению скелетной мышцы (нервные импульсы → синаптическая передача → потенциалы действия) начинается деполяризация мембран уже саркоплзматического ретикулума. Ионы кальция из саркоплазматического ретикулума начинают выходить в саркоплазму (по механизмам пассивного транспорта по электрохимическому градиенту через кальциевые каналы, рисунок 6, В). Когда возле миофибрилл концентрация кальция достигает максимума, создаются все условия для мышечного сокращения (ионы кальция действуют на тропонин → тропонин снимает тропомиозионовую блокаду → миозин взаимодействует с актином → гидролиз АТФ → гребковые движения актиновых и миозиновых нитей).

Источник

Электро-механическое сопряжение в сердечной мышце

Вход внеклеточного Са 2+ запускает освобождение Са 2+ из саркоплазматического ретикулума, инициируя, тем самым, сокращение кардиомиоцитов. Длительность мышечного сокращения определяется временем, в течение которого концентрация Са 2+ остается повышенной. Механизм, с помощью которого процесс возбуждения преобразуется в процесс увеличения [Са]i, назвали электромеханическим сопряжением.

Рис. 2. 12. Структура тонких и толстых филаментов

Рис. 2.13. Роль Са 2+ в запуске сокращения мышцы

2.4.2. Механизм сокращения сердечной мышцы

Рис. 2.15. Электро-механическое сопряжение в скелетной мышце

Затем концентрация Са 2+ начинает снижаться, что является сигналом к прекращению цикла образования поперечных мостиков и мышца начинает расслабляться

Необходимо подчеркнуть, что Са 2+ управляет сокращением через регуляторные белки, а не через прямое взаимодействие с сократительными белками. В отсутствие Са 2+ эти регуляторные белки блокируют взаимодействие актина и миозина и тормозят сокращение. Связывание Са 2+ с этими белками приводит к конформационным изменениям регуляторного комплекса белков, которые устраняют их блокирующее действие.

Сократительные белки превращают энергию гидролиза АТФ в механическую энергию. Процесс циклического образования поперечных мостиков (рис. 2.16.) можно разделить на 5 этапов. Вначале головка миозина прикрепляется к нити актина за счет выделения кинетической энергии от предыдущего цикла и после того, как актомиозиновый комплекс освободит аденозиндифосфат (АДФ). В отсутствие АТФ система будет находиться в “ригидном” состоянии неопределенно долго. В стадии ригидности головка миозина располагается под углом 45 о по отношению к нитям актина и миозина.

Рис. 2.16. Цикл образования поперечных мостиков в сердечной мышце.

Этап 3. Образование поперечного мостика. Выпрямленная головка миозина вновь связывается уже с другим фрагментом нити актина. Это связывание объясняется повышением сродства комплекса миозин-АДФ-фосфат к актину.

Этап 4. Отсоединение неорганического фосфата от миозина. Отсоединение фосфата от головки миозина обеспечивает конформационное изменение головки, в результате которого головка миозина изгибается под углом 45 0 и проталкивает нить актина на расстояние 11 нм в направлении к хвостовой части нити миозина. Таким образом, нить актина продвигается вдоль миозина, вызывая укорочение мышцы.

Читайте также:  Если болят мышцы ног к какому врачу обратиться

Этап 5. Диссоциация АДФ. Отсоединение АДФ от миозина завершает цикл и актомиозиновый комплекс приходит в ригидное состояние. Головка миозина остается в положении под углом 45 0 по отношению к толстым и тонким филаментам. Без АДФ миозиновый комплекс остается связанным с актином до тех пор, пока не присоединит другую молекулу АТФ.

В результате циклического образования и разрушения поперечных мостиков тонкие нити скользят между толстыми и мышца укорачивается.

Расслабление сердечной мышцы, то есть расхождение сократительных белков, определяется тремя процессами: 1) выводом Са 2+ во внеклеточную жидкость, 2) повторным захватом Са 2+ из саркоплазмы в саркоплазматический ретикулум и 3) отщеплением Са 2+ от комплекса Са 2+ /тропонин.

Фосфорилирование фосфоламбана протеинкиназой А хорошо объясняет тот факт, что агонисты b1-адренергических рецепторов (например, адреналин, действующий через протеинкиназу А), ускоряют расслабление сердечной мышцы.

Удаление Са 2+ от тропонина С.По мере того, как [Ca]i падает, ионы Са 2+ отщепляются от тропонина, что прекращает взаимодействие актина и миозина и мышца расслабляется. b1-адренергические агонисты ускоряют расслабление посредством фосфорилирования тропонина I, что, в свою очередь, увеличивает скорость отщепления Са 2+ от тропонина С.

5. Увеличенная частота сердцебиений.При повышении частоты сердечных сокращений, увеличиваются запасы Са 2+ в саркоплазматическом ретикулуме, что приводит к увеличению [Ca]i и к усилению сокращений.

Дата добавления: 2014-11-08 ; Просмотров: 3541 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Механизм мышечных сокращений. Функции и свойства скелетных мышц

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

Из гладких мышц состоит:

Физиологические свойства

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Виды сокращений

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Структура и иннервация скелетных мышц

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

Главная особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Читайте также:  Потянул мышцу на ноге в области паха

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Иннервация

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц. Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации. Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов. В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения. Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Структура миофибрилл

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью. Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними. При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Механизм мышечного сокращения волокна

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Этапы сокращения

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

Читайте также:  Подкожная мышца шеи заболевания

Ионы кальция

Для лучшего понимания процесса активации волокна ионами кальция удобно рассмотреть структуру актиновой нити. Длина ее составляет порядка 1 мкм, толщина — от 5 до 7 нм. Это пара закрученных ниток, которые напоминают мономер актина. Примерно через каждые 40 нм здесь находятся сферические тропониновые молекулы, а между цепями — тропомиозиновые.

Когда ионы кальция отсутствуют, то есть миофибриллы расслабляются, длинные тропомиозиновые молекулы блокируют крепление актиновых цепей и мостиков миозина. Но при активизации ионов кальция тропомиозиновые молекулы опускаются глубже, и участки открываются.

Тогда миозиновые мостики прикрепляются к актиновым нитям, а АТФ расщепляется, и сила мышц развивается. Это становится возможным за счет воздействия кальция на тропонин. При этом молекула последнего деформируется, проталкивая тем самым тропомиозин.

Когда мышца расслаблена, в ней на 1 грамм сырого веса содержится больше 1 мкмоль кальция. Соли кальция изолированы и находятся в особых хранилищах. В противном случае мышцы бы все время сокращались.

Хранение кальция происходит следующим образом. На разных участках мембраны клетки мышцы внутри волокна имеются трубки, через которые происходит соединение со средой вне клеток. Это система поперечных трубочек. А перпендикулярно ей находится система продольных, на концах которых — пузырьки (терминальные цистерны), расположенные в непосредственной близости к мембранам поперечной системы. Вместе получается триада. Именно в пузырьках хранится кальций.

Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

3 процесса с АТФ

При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ. Когда реализуется механизм мышечного сокращения скелетной мышцы, энергия АТФ применяется для:

АТФ находится в клеточной мембране, нитях миозина и мембранах ретикулума саркоплазматического. Фермент расщепляется и утилизируется миозином.

Потребление АТФ

Известно, что миозиновые головки взаимодействуют с актином и содержат элементы для расщепления АТФ. Последняя активизируется актином и миозином при наличии ионов магния. Поэтому расщепление фермента происходит при прикреплении миозиновой головки к актину. При этом чем больше поперечных мостиков, тем скорость расщепления будет выше.

Механизм АТФ

После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется. Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне.

Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения.

Ресинтез АТФ

Ресинтез возможно реализовать двумя путями.

Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ. Так как запасов в клетке креатинфосфата намного больше АТФ, ресинтез реализуется очень быстро. В то же время посредством окисления пировиноградной и молочной кислот ресинтез будет осуществляться медленно.

АТФ и КФ могут исчезнуть полностью, если ресинтез будет нарушен ядами. Тогда и кальциевый насос прекратит работу, вследствие чего мышца необратимо сократится (то есть настанет контрактура). Таким образом, нарушится механизм мышечного сокращения.

Физиология процесса

Подытоживая вышесказанное, отметим, что сокращение волокна мышцы состоит в укорочении миофибрилл в каждом из саркомеров. Нити миозина (толстые) и актина (тонкие) связаны концами в расслабленном состоянии. Но они начинают скользящие движения друг навстречу к другу, когда реализуется механизм мышечного сокращения. Физиология (кратко) объясняет процесс, когда под влиянием миозина выделяется необходимая энергия для преобразования АТФ в АДФ. При этом активность миозина будет реализована лишь при достаточном содержании ионов кальция, накапливающихся в саркоплазматической сети.

Источник

Adblock
detector