Меню

Механизмы передачи возбуждения с нерва в мышцу

Нервно-мышечная передача возбуждения

Передача возбуждения с нервного волокна на мышечное осуществляется через посредство нервно-мышечного синапса (морфо-функциональный контакт между пресинаптическим окончанием аксона эфферентного нейрона и определенным участком мембраны мышечного волокна). По способу передачи информации мионевральный синапс относится к синапсам химического типа.

В нервно-мышечном синапсе, как и в любом другом, выделяют:

Ø пресинаптическую мембрану (часть мембраны пресинаптического окончания аксона двигательного нейрона, вступающая в контакт с мембраной мышечного волокна),

Ø постсинаптическую мембрану (часть мембраны мышечного волокна, с которой вступает в контакт мембрана нервного волокна),

Ø синаптическую щель (узкое пространство между пре- и постсинаптической мембранами, заполненное межклеточной жидкостью; ширина этого пространства в нервно-мышечном синапсе составляет 80-100 нм).

Рис. 8. Мотонейрон (двигательный нейрон) и иннервируемое им скелетное мышечное волокно (А); прямоугольник указывает на нервно-мышечный синапс (Б – его схематическое представление), в образовании которого принимает участие пресинаптическая терминаль аксона мотонейрона (по Е.А. Шубниковой, 1987).

Нервно-мышечный синапс является химическим: передача возбуждения с нервного волокна на мышечное (будь-то скелетное или гладкое мышечное волокно) осуществляется с участием специальных химических посредников – медиаторов (химических веществ, чаще всего, органической природы). Так, медиатором в синапсе между нервным и скелетным мышечным волокнами является ацетилхолин (Ах), а в синапсах между нервными и гладкими мышечными волокнами – могут выступать как ацетилхолин, так и норадреналин (НА).

Рассмотрим механизм передачи возбуждения с нервного волокна на скелетное мышечное волокно (этот механизм является в определенном плане универсальным для всех химических синапсов, но в зависимости от того, какие структуры принимают участие в образовании синапса, имеет свои особенности).

Рис. 6. Ультраструктурная организация нервно-мышечного синапса (по T. Smit, 2002). А – СЭМ терминали двигательного нервного волокна и фрагмента скелетного мышечного волокна, принимающего участие в образовании синаптического контакта. Б – ТЭМ нервно-мышечного синапса. В – схема строения химического синапса.

В момент, когда пузырьки, содержащие ацетилхолин, приближаются к пресинаптической мембране на определенное расстояние, их мембрана встраивается в пресинаптическую, а содержимое (медиатор – ацетилхолин) оказывается в синаптической щели. Количество молекул ацетилхолина во всех пузырьках примерно одинаково; содержимое одного пузырька получило название кванта медиатора. Таким образом, деполяризация пресинаптической мембраны сопровождается выделением в синаптическую щель определенного количества квантов медиатора ацетилхолина.

Ацетилхолин диффундирует через синаптическую щель и достигает постсинаптической мембраны. Особенностью постсинаптической мембраны является отсутствие потенциалзависимых каналов (имеющихся во всей остальной мембране мышечного волокна, называемой внесинаптической), но наличие хемовозбудимых каналов. Состояние хемовозбудимых каналов не зависит от величины мембранного потенциала, но может изменяться под влиянием определенных химических веществ (в частности, молекул медиатора).

В хемовозбудимом канале, подобно электровозбудимому, различают отверстие (пору), в области которого расположены ворота (белковой природы); но состояние этих ворот (их пространственная структура, определяющая открытое или закрытое состояние канала) зависит не от величины заряда на мембране, а от состояния, расположенного вблизи этих ворот белка-рецептора, обладающего высоким сродством к медиатору (и возможно некоторым другим веществам). В частности, в хемовозбудимых каналах постсинаптической мембраны скелетного мышечного волокна имеются белковые холинорецептор и ворота. В отсутствии ацетилхолина в области холинорецептора канал закрыт. Присоединение ацетилхолина к холинорецептору сопровождается изменением его конформации, что приводит и к изменению конформации расположенных поблизости от холинорецептора ворот таким образом, что они отодвигаются от поры канала, и канал открывается. Размер пор в хемовозбудимых каналах (

0,65 нм) несколько больше такового в электровозбудимых натриевых и калиевых каналах, в связи с чем они потенциально способны пропускать любые ионы (натрия, калия, кальция), т.е. характеризуются сравнительно низкой селективностью. Вместе с тем преобладающими в силу распределения электрического заряда на мембране является входящий натриевый ток, который деполяризует постсинаптическую мембрану мышечного волокна (возникает т.н. постсинаптический потенциал). Но такая деполяризация не может приобретать самообновляющийся характер, поскольку в постсинаптической мембране отсутствуют потенциалзависимые каналы. Доля открытых хемовозбудимых каналов определяется количеством высвободившихся в синаптическую щель молекул медиатора. В связи с этим постсинаптический потенциал, в отличие от потенциала действия, является градуальным. При некоторой определенной амплитуде постсинаптического потенциала в ближайшем к синапсу участке внесинаптической мембраны мышечного волокнаактивная деполяризация, вызванная этим постсинаптическим потенциалом, приобретает самообновляющийся характер, что приводит к генерации нервного импульса, который проводится вдоль скелетного мышечного волокна, инициируя его сокращение.

Читайте также:  Крампи икроножных мышц мкб

Важную роль в функционировании нервно-мышечного синапса играет фермент холинэстераза, который локализован в синаптической щели и расщепляет ацетилхолин. Расщепление ацетилхолина обеспечивает не постоянное, а временное его действие на постсинаптическую мембрану, благодаря чему синаптическая передача носит дискретный характер. При ритмическом слишком частом следовании нервных импульсов к пресинаптическому окончанию по нервному волокну холинэстераза не успевает расщепить ацетилхолин, выделившейся при каждом предыдущем возбуждении пресинаптической мембраны нервного волокна, и все бóльшая доля хемовозбудимых каналов постсинаптической мембраны скелетного мышечного волокна оказывается открытой, что приводит к росту постсинаптического потенциала. Данное обстоятельство является причиной длительной и стойкой деполяризации внесинаптической мембраны мышечного волокна, сопровождающейся постепенной натриевой инактивацией и снижением возбудимости внесинаптической мембраны вплоть до полной временной утраты способности генерировать нервные импульсы; наступает блок синаптической передачи (пессимальное торможение нервно-мышечного синапса). Пессимальное торможение нервно-мышечной передачи наступает при частоте стимуляции нервного волокна 100-150 имп./с. Таким образом, лабильность нервно-мышечного синапса в связи с химическим механизмом передачи гораздо меньше таковой нервного волокна (до 2000 имп./с) и скелетных мышечных волокон (до 500 имп./c).

Химический механизм передачи возбуждения через синапс определяет следующие ее особенности:

Ø одностороннее проведение возбуждения (только в направлении от нервного волокна на мышечное волокно). Связано с тем, что синаптическая щель в химических синапсах довольно широкая (до 80-100 нм), и ионные токи, возникающие при деполяризации постсинаптической мембраны, шунтируются в этой щели и не способны вызвать возвратную деполяризацию пресинаптической мембраны

Ø задержанное проведение возбуждения (латентный период передачи информации через синапс составляет 0,3-0,5 мс). Обусловлено тем, что для осуществления процессов выделения медиатора в синаптическую щель под действием приходящего к пресинапсу нервного импульса, диффузии медиатора к постсинаптической мембране и проявления его эффектов на постсинаптическую мембрану требуется определенное время

Ø относительно низкая лабильность синапсов (по сравнению с нервными и мышечными волокнами) в связи с зависимостью процесса нервно-мышечной передачи от медиатора и необходимостью для нормальной работы синапса постоянного расщепления медиатора после каждого проводимого возбуждения

Ø относительно высокая утомляемость синапсов (поскольку максимальная продолжительность их постоянного функционирования лимитируется запасом «готового» к высвобождению медиатора; кроме того, при длительном проведении возбуждения через синапс уменьшается чувствительность постсинаптической мембраны к ацетилхолину, что также является одной из причин развития утомления в синапсе).

Химический способ передачи информации через нервно-мышечный синапс обуславливает, наряду с отмеченным, и высокую степень зависимости этого процесса от ряда химических веществ (т.н. модуляторов синаптической передачи). Так, временно заблокировать нервно-мышечную передачу можно несколькими путями:

Ø блокируя секрецию ацетилхолина в синаптическую щель (таким действием обладают столбнячный и ботулинический токсины),

Ø блокируя холинорецепторы постсинаптической мембраны (таким действием обладают кураре и его производные),

Ø инактивируя холинэстеразу (например, под действием прозерина).

Источник

ВОПРОС: 79. Механизм нервно-мышечной передачи и его особенности.

Передача возбуждения в нервно-мышечном синапсе

В процес­се передачи возбуждения с нерва на мышечные волокна выделяют три последовательных процесса: 1. электрический, включащий до­стижение нервным импульсом концевой веточки аксона, деполяри­зацию и повышение проницаемости ее мембраны, выделение ацетилхолина (АХ) в синаптическую щель; 2. химический, основу ко­торого составляет диффузия медиатора АХ к постсинаптической мембране и образование на ней его комплекса с холинорецептором;
3. электрический, включащий увеличение ионной проницаемости постсинаптической мембраны, возникновение локального электрического потенциала (потенциала концевой пластинки; ПКП), разви­тие потенциала действия мышечного волокна. Временно возникающий на постсинаптической мембране комплекс «АХ- рецептор» после прохождения каждого импульса разрушается ферментом ацетил-холинэстеразой. Однако при длительной высоко­частотной импульсации мотонейрона (например при длительной и напряженной мышечной работе) АХ не успевает разрушаться и накапливается в синаптической щели. Способность постсинаптичес­кой мембраны к генерации ПКП при этом снижается и развивается частичный или полный постсинаптический нервно-мышечный блок, приводящий либо к частичному, либо даже полному прекращению развития потенциалов действия на мембране мышечного волокна.

Читайте также:  Как начать мышцы для начинающих

ВОПРОС: 80. Сократимость. Механизмы мышечного сокращения.

Понятия «изотонический», «изометрический» важны для анализа сократительной активности изолированных мышц и для понимания биомеханики сердца.

Виды сокращений

Суммированные сокращения возникают в том случае, если на мышцу наносятся 2 и более раздражения, причем всякое последующее раздражение (после предыдущего) наносится либо во время 2-й фазы (расслабления или удлинения), либо во время 1-й фазы (укорочения или напряжения).

ВОПРОС: 81.Оценка возбудимости нервной клетки, пороговая сила раздражителя. Аккомодация.Общим свойством живой материи является ее раздражимость. Раздражимость – это реакция отдельных клеток или тканей на действие раздражителя. Раздражитель – это любое изменение внешней или внутренней среды организма, воспринимаемое клетками и вызывающее ответную реакцию. По природе раздражители бывают физические (электрические, механические, температурные, световые) и химические. Частным случаем раздражимости является возбудимость. Возбудимость – это свойство нейрона генерировать потенциал действия (ПД) на раздражение. К возбудимым клеткам относятся только те клетки, которые генерируют потенциал действия. К ним относятся нейроны и мышечные клетки. Проводимость (как общее понятие) – это способность ткани и клетки проводить возбуждение.

Оценка возбудимости клетки

Возбудимость клетки изменяется не только в процессе возбуждения, но и при изменении химического состава внеклеточной жидкости. При снижении концентрации Na + вне клетки этот ион в меньшем количестве входит в клетку, в результате чего снижается ее возбудимость вследствие гиперполяризации мембраны. Показателями состояния возбудимости ткани являются пороговый потенциал, пороговая сила и пороговое время.

1. Пороговый потенциал – минимальная величина, на которую надо уменьшить МП, чтобы вызвать возбуждение. Возбудимость и пороговый потенциал находятся в обратном соотношении: чем меньше пороговый потенциал, тем выше возбудимость клетки. Однако во всех случаях ПД возникает только при достижении критического уровня деполяризации клеточной мембраны.

2. Пороговая сила – наименьшая сила раздражителя, способная вызвать импульсное возбуждение при неограниченном ее действии во времени. Большая пороговая сила свидетельствует о низкой возбудимости ткани. Обычно раздражителем в эксперименте используется электрический ток. Наименьшая сила тока, способная вызвать ПД, называется реобазой. Если раздражитель по своей амплитуде меньше реобазы, то возбуждение не возникает. Если раздражитель нарастает постепенно и медленно, то возникает аккомодация, то есть понижение возбудимости клетки, вплоть до полного исчезновения ПД. Аккомодация – это своеобразное привыкание клетки к раздражителю.

3. Пороговое время – минимальное время, в течение которого раздражитель пороговой силы должен действовать на ткань, чтобы вызвать ее возбуждение. Пороговое время называют также полезным временем, так как раздражитель обеспечивает деполяризацию только до критического уровня. Затем ПД развивается независимо от действия раздражителя. В эксперименте и в клинической практике обычно используют не полезное время, а хронаксию – наименьшее время, в течение которого должен действовать ток в две реобазы, чтобы вызвать возбуждение. Измерение хронаксии позволяет уточнить характер повреждения мышцы и ее нерва.

Источник

Механизм передачи возбуждения в нервно-мышечном синапсе

Классификация синапсов

Строение синапса.

Механизм передачи возбуждения в синапсах

Синапсы — специализированные структуры, которые обеспечивают передачу возбуждения с одной возбудимой клетки на другую.

Нервное волокно, подходя к клетке, образует утолщение, которое контактирует с клеткой. Этот участок называется пресинаптической мембраной. Противоположная мембрана называется постсинаптической. Между ними имеется щель, которая заполнена олигосахаридсодержащей соединительной тканью, выполняющей роль поддерживающей структуры для обеих контактирующих клеток. Синапс включает в себя систему синтеза и освобождения медиатора, а также систему его инактивации.

В пресинаптическом окончании содержится нейромедиаторы, которые способны возбуждать или тормозить иннервируемую клетку.

Читайте также:  После подтягиваний болят мышцы рук в руки

Миелиновые нервные волокна, подходя к скелетной мышце, дают веерообразные разветвления на концевые волокна (терминали). Область образования синапсов между нервными окончаниями и мышцами называется двигательной концевой пластинкой. Постсинаптическая мембрана мышечного волокна толще и образует регулярные складки, которые увеличивают площадь поверхности постсинаптической мембраны. Поэтому большее количество медиатора может контактировать с постсинаптической мембраной мышечного волокна.

1. По местоположению и принадлежности соответствующим структурам:

— периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

— центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2. По эффекту действия:

3. По способу передачи сигналов:

— электрические. Передают возбуждение без участия медиатора с большой скоростью и обладают двухсторонним проведением возбуждения. Структурной основой электрического синапса является нексус. Встречаются эти синапсы в железах внутренней секреции, эпителиальной ткани, ЦНС, сердце.

В некоторых органах возбуждение может передаваться и через химические и через электрические синапсы.

4) По медиатору, с помощью которого осуществляется передача сигнала химические синапсы классифицируют:

— глицинергически. и т.д.

Синапсы с химической передачей возбуждения обладают рядом общих свойств:

— Возбуждение через синапсы проводится только в одном направлении (односторонне). Это обусловлено строением синапса: медиатор выделяется только из пресинаптического утолщения и взаимодействует с рецепторами постсинаптической мембраны;

— передача возбуждения через синапсы осуществляется медленнее, чем по нервному волокну — синаптическая задержка;

— передача возбуждения осуществляется с помощью специальных химических посредников — медиаторов;

— в синапсах происходит трансформация ритма возбуждения;

— синапсы обладают низкой лабильностью;

— синапсы обладают высокой утомляемостью;

— синапсы обладают высокой чувствительностью к химическим (в том числе и к фармакологическим: блокаторам, психомиметикам).

ПД достигая нервного окончания (пресинаптической мембраны) вызывает его деполяризацию. При деполяризации пресинаптической мембраны кальций входит в пресинаптическую терминаль через специфические потенциалозависимые кальциевые каналы в этой мембране. Увеличение концентрации кальция в нервном окончании способствует освобождению ацетилхолина, который выходит в синаптическую щель.

Медиатор достигает постсинаптической мембраны и связывается там с рецепторами. В результате внутрь постсинаптической мембраны поступают ионы натрия и эта мембрана частично деполяризуется, т.е. возбуждение пока еще не распространяется дальше, а находится в синапсе. Частичная деполяризация постсинаптической мембраны называется возбуждающим постсинаптическим потенциалом (ВПСП).

В результате этих механизмов развивается синаптическая задержка, которая составляет от 0,2 до 1 мВ.

Под влиянием ВПСП в соседнем чувствительном участке мембраны мышечного волокна возникает распространяющийся ПД, который и вызывает сокращение мышцы.

Для восстановления возбудимости постсинаптической мембраны после очередного импульса необходима инактивация медиатора (инактивационная система). В противном случае, при длительном действии медиатора происходит снижение чувствительности рецепторов к этому медиатору.

Схема передачи возбуждения в электрическом синапсе:

Ток, вызванный пресинаптическим потенциалом действия, раздражает постсинаптическую мембрану, где возникает ВПСП и потенциал действия.

Поперечные каналы объединяют клетки не только электрически, но и химически, так как они проходимы для многих низкомолекулярных соединений. Поэтому возбуждающие электрические синапсы с поперечными каналами формируются, как правило, между клетками одного типа (например, между клетками сердечной мышцы).

Общими свойствами возбуждающих электрических синапсов являются:

— быстродействие (значительно превосходит таковое в химических синапсах»;

— слабость следовых эффектов при передаче возбуждения (в результате этого в них практически невозможна суммация последовательных сигналов);

— высокая надежность передачи возбуждения.

Электрические синапсы могут быть с односторонней и двусторонней передачей возбуждения.

Электрический тормозной синапс. Наряду с электрическими синапсами возбуждающего действия могут встречаться электрические тормозные синапсы. Тормозящее влияние возникает за счет действия тока, вызванного потенциалом действия пресинаптической мембраны. Пресинаптический потенциал вызывает значительную гиперполяризацию сегмента, и гиперполяризующий ток мгновенно тормозит генерацию потенциала действия в начальном сегменте аксона.

В смешанных синапсах пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Источник

Adblock
detector