Меню

Цамф в гладких мышцах

Физиологические особенности гладких мышц

Пластичность – способность сохранять приданную растяжением длину без изменения напряжения.

Значение пластичности: за счет пластичности гладкой мышцы давление внутри полых органов мало изменяется при разной степени наполнения этих органов.

Свойство автоматии – способность к спонтанной автоматической деятельности. Автоматия гладких мышц имеет миогенную природу, обусловлена наличием особых клеток – пейсмейкеров – ритмоводителей (обладают высокой возбудимостью и способны к самостоятельной генерации импульсов возбуждения).

Гладкие мышцы функционируют так, как если бы они имели истинное синтициальное строение. Гладкие мышцы отделены друг от друга межклеточными щелями, за счет этого потенциал действия и медленные волны деполяризации беспрепятственно распространяются с одного волокна на другое. Поэтому гладкие мышцы иногда называют функциональным синцитием.

Вегетативные нервные волокна, которые иннервируют гладкую мускулатуру, расположены на небольшом числе миоцитов, и если нервный импульс поступает к небольшому числу мышечных клеток, возбуждение беспрепятственно распространяется с одной на другую, вовлекая в реакцию всю мышцу.

Электрофизиологические свойства гладких мышц

б) амплитуда ПД в гладких мышцах также немного ниже, чем в скелетных. В гладких мышцах внутренних органов зарегистрированы ПД 2-х основных типов:

· ПД с выраженным плато

– Пик, как правило, сопровождается следовой гиперполяризацией; длительность пикоподобных ПД 5-80 мсек.

– Пик с выраженным плато регистрируется в гладкой мускулатуре уретры, матки и некоторых кровеносных сосудов. Продолжительность плато 30-500 мсек.

Ионный механизм возникновения ПД в гладкой мышце

1) Ионной селективностью: проницаемы для 2-валентных ионов.

Проведение возбуждения по гладкой мышце

Как и в нервных волокнах и скелетных мышцах возбуждение проводится посредством локальных электрических токов, который возникает между деполяризованным и соседним покоящимся участком клеточной мембраны. Однако есть свои особенности:

1) ПД, возникший в одной клетке может распространится и на соседние клетки. В области контактов с соседними клетками (нексусы) имеются участки с очень малым сопротивлением, поэтому петли тока, возникшие в одной клетке, легко проходят на соседние. Таким образом ПД способен распространятся лишь на определенное расстояние, которое тем больше, чем сильнее был стимул.

2) ПД действия в миоцитах распространяется лишь в том случае, если приложенный стимул возбуждает одновременно некоторое минимальное число клеток.

3) Скорость проведения возбуждения в различных гладких мышцах составляет от 2 до 10 см/сек, то есть меньше, чем в скелетных.

Механизм сокращения гладких мышц

Связь между возбуждением и сокращением в гладкой мускулатуре осуществляется при помощи ионов Ca 2+ также, как и в скелетных мышцах (электромеханическое сопряжение обеспечивается Ca 2+ ).

Механизм выведения Ca 2+ из миоплазмы при расслаблении из гладкомышечного волокна обеспечивается мембранной транспортной системой:

Читайте также:  Рост мышц с годами

1) Системой подвижных переносчиков. Облегченная диффузия по типу антипорта (внутриклеточный Ca 2+ на внеклеточный Na + ).

Сократительная активность гладкой мышцы

При большой силе одиночного раздражения может возникнуть сокращение гладкой мышцы. Латентный период одиночного сокращения значительно больше, чем у скелетной мышцы (например, у кишечной мускулатуры от 0,25 до 1 сек).

Продолжительность самого сокращения тоже велика: в желудке кролика
5 сек.

После сокращения наступает расслабление, которое протекает особенно медленно.

Так как гладкая мышца медленно сокращается, то даже при редких ритмических раздражениях она легко переходит в состояние длительного стойкого сокращения, которое напоминает тетанус скелетных мышц.

Автоматия гладкой мускулатуры

Особенностью гладкой мускулатуры является автоматия, то есть способность к спонтанной сократительной деятельности.

Миогенное возбуждение возникает в пейсмейкерах – клетках-руководителях.

Пейсмейкерные потенциалы деполяризуют его мембрану до порогового уровня, вызывая ПД.

Спонтанная пейсмейкерная активность модулируется вегетативной нервной системой (симпатическими и парасимпатическими нервными волокнами) и ее медиаторами: норадреналином и ацетилхолином.

Медиатор парасимпатической НС ацетилхолин вызывает деполяризацию.

Медиатор симпатической НС норадреналин гиперполяризует мембрану.

Источник

Цамф в гладких мышцах

Гладкие мышцы содержат актиновые и миозиновые нити, имеющие химические характеристики, подобные актиновым и миозиновым нитям скелетных мышц. Но в гладких мышцах нет тропонинового комплекса, необходимого для запуска сокращения скелетной мышцы, следовательно, механизм инициации сокращения в них другой. Этот механизм подробно обсуждается далее в нашей статье.

Химические исследования показали, что актиновые и миозиновые нити, извлеченные из гладких мышц, взаимодействуют друг с другом во многом так же, как и в скелетной мышце. Более того, процесс сокращения активируется ионами кальция, а энергия для сокращения обеспечивается разрушением АТФ до АДФ.

Существуют, однако, значительные различия в морфологической организации гладких и скелетных мышц, а также в сопряжении возбуждения и сокращения, механизме запуска ионами кальция сократительного процесса, длительности сокращения и количестве энергии, необходимой для сокращения.

Морфологическая основа сокращения гладких мышц

Гладкие мышцы не имеют такой упорядоченной организации актиновых и миозиновых нитей, которая обнаруживается в скелетных мышцах, придавая им «полосатость». С помощью техники электронной микрофотографии выявляется гистологическая организация. Видно большое число актиновых нитей, прикрепленных к так называемым плотным тельцам. Некоторые из этих телец прикрепляются к клеточной мембране, другие распределяются внутри клетки. Некоторые из мембранных плотных телец соседних клеток связываются вместе мостиками из внутриклеточных белков. Через эти мостики в основном передается сила сокращения от одной клетки к другой.

В мышечном волокне среди актиновых нитей разбросаны миозиновые нити. Их диаметр более чем в 2 раза превышает диаметр актиновых нитей. На электронных микрофотографиях актиновых нитей обычно обнаруживают в 5-10 раз больше, чем миозиновых.

Читайте также:  Дерганье мышц во сне

На рисунке представлена предполагаемая структура отдельной сократительной единицы внутри гладкомышечной клетки, где видно большое число актиновых нитей, исходящих от двух плотных телец; концы этих нитей перекрывают миозиновую нить, расположенную посередине между плотными тельцами. Эта сократительная единица похожа на сократительную единицу скелетной мышцы, но без специфической регулярности ее структуры. В сущности, плотные тельца гладкой мышцы играют ту же роль, что и Z-диски в скелетной мышце.

Существует и другое различие. Большинство миозиновых нитей имеют поперечные мостики с так называемой боковой полярностью. Мостики организованы следующим образом: на одной стороне они шарнирно фиксируются в одном направлении, а на другой — в противоположном направлении. Это позволяет миозину тянуть актиновую нить с одной стороны в одном направлении, одновременно продвигая с другой стороны другую актиновую нить в противоположном направлении. Такая организация позволяет гладкомышечным клеткам сокращаться с укорочением до 80% их длины вместо укорочения менее чем на 30%, характерного для скелетной мышцы.

Большинство скелетных мышц сокращаются и расслабляются быстро, но сокращения гладких мышц в основном являются длительными тоническими сокращениями, которые иногда продолжаются в течение нескольких часов или даже дней. Следовательно, можно ожидать, что морфологические и химические особенности гладких мышц должны отличаться от соответствующих характеристик скелетных мышц. Далее обсуждаются некоторые из этих отличий.

Медленная циклическая активность миозиновых поперечных мостиков. В гладкой мышце по сравнению соскелетной гораздо меньше скорость циклической активности миозиновых поперечных мостиков, т.е. скорость их прикрепления к актину, отсоединение от актина и повторное прикрепление для осуществления следующего цикла. Фактически частота циклов составляет лишь от 1/10 до 1/300 этого показателя в скелетной мышце. Однако, как считают, в гладкой мышце значительно больше относительное количество времени, в течение которого поперечные мостики остаются прикрепленными к актиновым нитям, что является главным фактором, определяющим силу сокращения. Возможной причиной медленного циклирования является гораздо меньшая по сравнению со скелетной мышцей АТФ-азная активность головок поперечных мостиков, в связи с чем скорость разрушения АТФ — источника энергии для движения головок поперечных мостиков — значительно снижена с соответствующим замедлением скорости их циклов.

Источник

Цамф в гладких мышцах

Как и в скелетной мышце, пусковым стимулом для сокращения большинства гладких мышц является увеличение количества внутриклеточных ионов кальция. В разных типах гладких мышц это увеличение может быть вызвано нервной стимуляцией, гормональной стимуляцией, растяжением волокна или даже изменением химического состава окружающей волокно среды.

Читайте также:  Виды паразитов человека в мышцах

Однако в гладких мышцах нет тропонина (регуляторного белка, который активируется кальцием). Сокращение гладкой мышцы активируется совершенно другим механизмом, изложенным далее.

Соединение ионов кальция с кальмодулином. Активация миозинкиназы и фосфорилирование головки миозина.

Вместо тропонина гладкомышечные клетки содержат большое количество другого регуляторного белка, называемого кальмодулином. Хотя этот белок похож на тропонин, он отличается способом запуска сокращения. Кальмодулин делает это путем активации миозиновых поперечных мостиков. Активация и сокращение осуществляются в следующей последовательности.

1. Ионы кальция связываются с кальмодулином.
2. Комплекс кальмодулин-кальций соединяется с фосфорилирующим ферментом миозинкиназой и активирует ее.
3. Одна из легких цепочек каждой головки миозина, называемая регуляторной цепочкой фосфорилируется под действием миозинкиназы. Когда эта цепочка не фосфорилирована, циклического прикрепления и отделения миозиновой головки по отношению к актиновой нити не происходит. Но при фосфорилировании регуляторной цепочки головка приобретает способность к повторному связыванию с актиновой нитью и осуществлению всего циклического процесса периодических «подтягиваний», лежащих в основе сокращения, как и в скелетной мышце.

Прекращение сокращения. Роль миозинфосфатазы. Когда концентрация ионов кальция падает ниже критического уровня, изложенные процессы автоматически развиваются в обратном направлении, кроме фосфорилирования головки миозина. Для обратного развития этого состояния нужен другой фермент — миозинфосфатаза, который локализуется в жидкостях гладкомышечной клетки и отщепляет фосфатазу от регуляторной легкой цепочки. После этого циклическая активность, а значит и сокращение, прекращается.
Следовательно, время, необходимое для расслабления мышцы, в большой степени определяется количеством активной миозинфосфатазы в клетке.

Возможный механизм регуляции механизма «защелки». В связи с важностью механизма «защелки» в функции гладких мышц предпринимаются попытки объяснить это явление, поскольку оно делает возможным долговременное поддержание тонуса гладких мышц многих органов без значительных энергетических затрат. Среди многих предложенных механизмов приводим один из простейших.

Когда сильно активированы и миозинкиназа, и миозинфосфатаза, частота циклов миозино-вых головок и скорость сокращения высокие. Затем, когда активация ферментов снижается, частота циклов уменьшается, но в то же время деактивация этих ферментов позволяет миози-новым головкам оставаться прикрепленными к актиновым нитям в течение все более длительной части цикла. Следовательно, число головок, прикрепленных к актиновой нити в любой данный момент времени, остается большим.

Поскольку число прикрепленных к актину головок определяет статическую силу сокращения, напряжение удерживается, или «защелкивается». Однако энергии при этом используется мало, поскольку расщепления АТФ до АДФ не происходит, за исключением тех редких случаев, когда какая-нибудь головка отсоединяется.

Источник

Adblock
detector