Меню

Цикл кребса и мышцы

Цикл Кребса простым языком

Что такое цикл Кребса

Функции цикла Кребса:

Атомы водорода, высвобождающиеся в окислительно-восстановительных реакциях, доставляются в цепь переноса электронов при участии НАД- и ФАД- зависимых дегидрогеназ, в результате чего происходит образование 12 высокоэнергетических фосфатных связей: синтез 12 молекул аденозинтрифосфорной кислоты (АТФ) из аденозиндифосфорной кислоты (АДФ).

Как работает цикл Кребса?

В организме аминокислоты, жирные кислоты и пируват образуют ацетил-КоА.

Когда ацетил-КоА попадает в митохондриальный матрикс, он связывается с молекулой оксалацетата и превращается в лимонную кислоту (цитрат). Цитрат, в свою очередь, под действием фермента аконитазы превращается в цис-аконитат, оставляя молекулу воды.

В свою очередь цис-аконитат превращается в изоцитрат под действием фермента изоцитратдегидрогеназы. Изоцитрат превращается в альфа-кетоглутарат под действием изоцитратдегидрогеназы.

Альфа-кетоглутарат превращается в сукцинил-КоА альфа-кетоглутаратдегидрогеназой и добавлением ацетил-КоА. Он подвергается сукцинату под действием сукцинат-тиокиназы. Сукцинатдегидрогеназа превращает его в фумарат. Фумарат превращается в L-малат через фумаразу. L-малат под действием фермента малатдегидрогеназы восстанавливает оксалацетат, который может снова вступать в реакцию с молекулой ацетил-КоА и повторять цикл.

Стадии цикла Кребса

Окисление ацетильного остатка происходит в несколько стадий, образующих циклический процесс из 8 основных этапов:

Основные этапы цикла Кребса

I этап

Конденсация ацетил-КоА и оксалоацетата с образованием цитрата.

Происходит реакция отщепление карбоксильной группы аминокислот, в процессе которой образуется ацетил-КоА

При соединении с молекулой щавелевой кислоты получается цитрат

*фигурирует в буферных обменах.

На данном этапе кофермент А полностью высвобождается, и получаем молекулу воды.

Данная реакция необратима.

II этап

Превращение цитрата в изоцитрат.

III этап

Превращение изоцитрата в а-кетоглутарат.

*Альфа-кетоглутарат участвует в регуляции всасывания аминокислот, нормализует метаболизм и положительно влияет на антистрессорные процессы.

Также образуется NADH ( аллостерический фермент)

IV этап

Окисление α-кетоглутарата до сукцинил-КоА

V этап

Превращение сукцинил-КоА в сукцинат.

Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту ( сукцинат ). Так же происходит образование высокоэргической фосфатной связи ГТФ за счет тиоэфирной связи сукцинил-КоА.

VI этап

Дегидрогенирование сукцината. Образование фумарата.

VII этап

Образование малата из фумарата.

Под влиянием фермента фумаратгидратазы ( фумаразы ). Образовавшаяся при этом фумаровая кислота гидратируется,

VIII этап

Превращение малата в оксалоацетат.

Под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат.

Происходит полное «сгорание» одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА. А коферменты (НАД + и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться.

Реакции цикла Кребса по стадиям

Для облегчения запоминания ферментативных реакций цикла:

ЩУКа съела ацетат, получается цитрат
через цис-аконитат будет он изоцитрат
водороды отдав НАД, он теряет СО2
этому безмерно рад альфа-кетоглутарат
окисление грядёт: НАД похитит водород
В1 и липоат с коэнзимом А спешат,
отбирают СО2, а энергия едва
в сукциниле появилась сразу ГТФ родилась
и остался сукцинат. вот добрался он до ФАДа,
водороды тому надо водороды потеряв,
стал он просто фумарат. фумарат воды напился,
и в малат он превратился тут к малату НАД пришёл,
водороды приобрёл ЩУКа снова объявилась
и тихонько затаилась Караулить ацетат…

Источник

Регуляция гликолиза и цикл Кребса

Содержание

В разных тканях гликолиз выполняет разные функции. В белых мышцах, сетчатке и эритроцитах в процессе гликолиза осуществляется анаэробный синтез АТФ, а в качестве побочного продукта образуется молочная кислота. При аэробном гликолизе в мышцах образуется пируват, который окисляется в цикле Кребса. Продукты цикла Кребса поступают в дыхательную цепь, и уже в ней синтезируется АТФ. В печени и жировой ткани в ходе аэробного гликолиза и пентозофосфатного пути образуется пируват, используемый для синтеза жирных кислот. Помните, что регуляция метаболических путей всегда имеет свою логику, именно функция процесса определяет способы его регуляции.

На стадии поступления глюкозы в клетку процесс гликолиза регулируется транспортерами глюкозы (ГЛЮТ), глюкокиназой или гексокиназой, фосфофруктокиназой-1, пируваткиназой и пируватдегидрогеназой.

Транспортеры глюкозы ГЛЮТ Править

Глюкоза поступает в клетку с помощью транспортеров глюкозы (ГЛЮТ). Существует несколько типов транспортеров глюкозы — ГЛЮТ1, ГЛЮТ2 и т.д. Все они расположены в плазматической мембране, кроме ГЛЮТ4, который регулирует поступление глюкозы в клетку и тем самым регулирует гликолиз в мышцах и жировой ткани. При голодании молекулы ГЛЮТ4 располагаются во внутриклеточных везикулах. После приема пищи под действием сигнала инсулина происходит перемещение ГЛЮТ4 в плазматическую мембрану, и клетка начинает интенсивно поглощать глюкозу.

Читайте также:  Двусуставные мышцы что это

Глюкокиназа и гексокиназа Править

Эти ферменты катализируют первую реакцию гликолиза — фосфорилирование глюкозы до глюкозо-6-фосфата. Гексокиназа содержится во многих тканях; у этого фермента низкое значение Km (т.е. высокое сродство к глюкозе). Гексокиназа по принципу обратной связи ингибируется продуктом реакции — глюкозо-6-фосфатом. Глюкокиназа содержится в печени и р-клетках поджелудочной железы. У глюкокиназы, напротив, высокое значение Km (т.е. низкое сродство к глюкозе). В печени она активна при высоких концентрациях глюкозы (до 15 ммоль/л), которая после приема углеводсодержащей пищи поступает из кишечника в печень по воротной вене печени. <Важно: глюкокиназа находится в печени.)

Фосфофруктокиназа-1 Править

Активация фосфофруктокиназы-1. Этот фермент активируется фруктозо-2,6-бисфосфатом (Ф-2,6-бисФ). Кроме того, АМФ также активирует фосфофруктокиназу-1. Высокие концентрации АМФ говорят о том, что клетка испытывает недостаток в энергии и требуется усилить синтез АТФ. Поэтому АМФ способствует интенсификации гликолиза.

(В печени образование фруктозо-2,6-бисфосфата активируется под действием инсулина и ингибируется под действием глюкагона. В скелетных мышцах образование этого вещества стимулируется высокой, а ингибируется низкой концентрацией фруктозо-6-фосфата.)

Ингибирование фосфофруктокиназы-1. Высокая концентрация АТФ ингибирует фосфофруктокиназу-1, и интенсивность гликолиза снижается. Кроме того, этот фермент ингибируется цитратом.

Пируваткиназа Править

Ингибирование пируваткиназы. В печени пируваткиназу ингибируют аланин и циклический АМФ. Эти вещества образуются при голодании. При голодании секретируется глюкагон, который стимулирует синтез циклического АМФ. Аланин же образуется при распаде мышечных белков при голодании и используется для синтеза глюкозы в процессе глюконеогенеза. При ингибировании пируваткиназы блокируется использование фосфоенолпирувата в гликолизе, и в клетке интенсифицируется глюконеогенез.

Активация пируваткиназы. В печени пируваткиназа активируется фруктозо-1,6-бисфосфатом (активация по принципу прямой связи). Этот процесс особенно важен при переходе от периода голодания к липогенезу. При голодании пируваткиназа неактивна, и в клетке интенсивно идет глюконеогенез, а при липогенезе пируваткиназа активируется.

Пируватдегидрогеназа Править

Пируватдегидрогеназа — комплекс из трех ферментов, который расположен в митохондриях. Он контролирует скорость поступления пирувата в цикл Кребса.

Активация пируватдегидрогеназы. После приема богатой углеводами пищи под действием инсулина происходит активация пируватдегидрогеназы в печени и жировой ткани, где пируват требуется для синтеза жирных кислот. Фермент также активируется своим субстратом (пируватом) и коферментами КоА и НАД+. Наконец, повышение концентрации АДФ также активирует пируватдегидрогеназу. Уровень АДФ повышается, когда клетка испытывает недостаток в энергии. Повышение концентрации АДФ свидетельствует о необходимости активации цикла Кребса и дыхательной цепи для синтеза АТФ.

Ингибирование пируватдегидрогеназы. Высокие концентрации АТФ ингибируют пируватдегидрогеназу, и окисление пирувата в цикле Кребса приостанавливается. Кроме того, активность фермента ингибируют продукты пируватдегидрогеназной реакции — ацетил-КоА и НАДН. Такая ситуация создается при голодании, когда в качестве источника энергии используются жирные кислоты, из которых образуется ацетил-КоА. В этом случае ингибирование пируватдегидрогеназы способствует сохранению пирувата для синтеза глюкозы. [Примечание: во время голодания пируват образуется из резервных запасов, т.е. из глюкозы, образующейся из гликогена и аминокислот, образующихся при распаде белков мышц.]

В разных тканях цикл Кребса выполняет разные функции. Так, в мышцах и головном мозге в цикле Кребса ацетил-КоА окисляется с образованием НАДН и ФАДН2, которые используются для синтеза АТФ в дыхательной цепи. В печени при голодании ацетил-КоА не окисляется в цикле Кребса. Вместо этого цикл Кребса используется для синтеза малата из некоторых аминокислот, который превращается в оксалоацетат и вступает в глюконеогенез. После приема пищи ацетил-КоА в печени и жировой ткани поступает в цикл Кребса на очень короткий период. В первой реакции цикла он преобразуется в цитрат, затем экспортируется в цитозоль и используется для биосинтеза жирных кислот.

Читайте также:  Как накачать мышцы груди и пресса в домашних условиях

Изоцитратдегидрогеназа Править

Изоцитратдегидрогеназа ингибируется при высокой концентрации НАДН. Кофермент изоцитратдегидрогеназы — НАД+. Когда НАД+ восстанавливается до НАДН, изоцитратдегидрогеназа инактивируется, поскольку ее кофермент отсутствует.

Недостаточность тиамина Править

В нервной ткани ведущую роль в синтезе АТФ играют гликолиз и дальнейший синтез ацетил-КоА в пируватдегидрогеназной реакции, который затем окисляется в цикле Кребса. Для нормального функционирования пируватдегидрогеназы необходим тиамин. При недостаточности тиамина активность фермента снижается, и нервная ткань испытывает недостаток в производимой энергии. Развиваются гиперлактатемия, заболевания нервной системы; в тяжелых случаях — болезнь Вернике, психоз Корсакова. Недостаточность тиамина наблюдается при хроническом алкоголизме, из-за плохого питания.

(Запомните, что, хотя ацетил-КоА может образовываться из жирных кислот независимо от пируватдегидрогеназной реакции, головной мозг не может использовать жирные кислоты в качестве источника энергии, поскольку они не проходят через гематоэнцефалический барьер.)

Болезнь Ли Править

Некоторые формы болезни Ли вызываются дисфункцией пируватдегидрогеназы.

Источник

Цикл Кребса – кратко и понятно суть, схема и реакции

Основой жизнедеятельности любого организма является аденозинтрифосфат — вещество, которое получается во время сложной цепи химических реакций. Этот процесс, происходящий в каждой клетке, продолжается непрерывно. Он называется циклом Кребса в честь немецкого ученого, занимавшегося изучением влияния некоторых кислот на преобразования глюкозы. В биохимии используется и другое название — цикл трикарбоновых кислот (ЦТК).

История изучения

Биологическая роль некоторых реакций цикла Кребса (ЦК) была изучена американским биохимиком венгерского происхождения Альбертом Сент-Дьердьи. В частности, он выделил ключевой компонент ЦТК — фумарат. Исследования в этом направлении продолжил Ганс Кребс. В итоге он установил всю последовательность реакций и соединений, образующиеся на всех этапах процесса. Ученый не смог определить, с преобразования какой кислоты начинается цикл — лимонной или изолимонной. Сейчас известно, что это лимонная кислота. Поэтому ЦК называют также цитратным или циклом лимонной кислоты.

Позднее американец Альберт Ленинджер, занимающийся биоэнергетикой, определил, что все реакции ЦК протекают в митохондриях клеток. С получением доступа к изотопам углерода появилась возможность более досконального изучения и уточнения данных о промежуточных соединениях на разных этапах цикла.

Метаболизм веществ

С пищей в организм поступают три основные группы сложных биохимических соединений — белки, жиры и углеводы. Они являются первичными метаболитами, потому что участвуют в обмене веществ или в метаболизме. Этот процесс происходит между любыми живыми клетками и окружающей средой непрерывно. Суть цикла Кребса заключается в том, что он является областью схождения двух путей метаболизма. Это следующие процессы:

После попадания в пищеварительную систему сложные вещества расщепляются под действием ферментов на более простые, которые внутри клеток превращаются сначала в пируват (пировиноградную кислоту), а затем — в ацетильный остаток. Все эти преобразования можно назвать подготовкой к ЦК, а образование остатка — его запуском или начальным этапом.

Дальнейшие стадии цикла трикарбоновых кислот являются частью катаболизма. Процесс идет каскадно. Каждый предыдущий этап запускает последующий, а промежуточные продукты химических реакций служат не только для продолжения цикла, но и при определенных потребностях организма могут пополнять запасы веществ, необходимых для синтеза новых соединений (анаболизма).

Клеточное дыхание

Для нормальной жизнедеятельности живым клеткам постоянно требуется энергия. Ее главный универсальный источник — аденозинтрифосфат (АТФ), способный встраиваться в белки организма напрямую. Это соединение получается в результате ряда реакций окисления, носящих общее название «клеточное дыхание». При этом происходит постепенный распад органических веществ вплоть до простейших неорганических — углекислого газа CO2 и воды H2O.

Структурное строение молекул АТФ содержит фосфорангидридные связи, которые имеют свойство накапливать высвобожденную при прохождении реакций клеточного дыхания энергию, поэтому называются макроэргическими. Так создаются энергетические запасы клеток, которые могут высвобождается при необходимости разрывом этих связей. Процесс синтеза АТФ и класса вспомогательных соединений включает три этапа:

Преобразование аденозиндифосфата (АДФ) в АТФ характерно для всех этапов. Но наибольшее суммарное количество молекул с макроэргическими связями образуется при фосфорилировании. Это не значит, что процессы гликолиза и ЦК менее важны. Многие соединения, образующиеся во время их протекания, участвуют в регуляции клеточного дыхания.

Читайте также:  Как правильно сушиться для рельефа мышц мужчинам питание

Описание процесса

Протекание ЦК достаточно экономно с точки зрения энергозатрат. Такой эффект достигается благодаря тому, что он связывает два метаболических направления. В процесс вовлекаются вещества, подлежащие утилизации, которые либо служат энергетическим «топливом», либо возвращаются в круг анаболизма. Подготовительная стадия ЦК заключается в распаде глюкозы, аминокислот и жирных кислот на молекулы пирувата или лактата.

Органеллы митохондрий способны преобразовывать пируват в ацетильный остаток (ацетил-коэнзим А или ацетил-КоА), представляющий собой вместе с тиольной группой, которая может его переносить, кофермент А. Некоторое соединения могут сразу распадаться до ацетил-КоА, минуя стадию пирувата. При этом пировиноградная кислота может вовлекаться непосредственно в ЦК, не преобразуясь в ацетил-КоА.

Начальные этапы

Первая стадия необратима и состоит из конденсации ацетил-КоА с четырехуглеродным веществом — оксалоацетатом (щавелевоуксусной кислотой или ЩУК), что приводит к образованию шестиуглеродного цитрата (лимонной кислоты). Во время реакции метильная группа ацетил-КоА соединяется с карбонильной группой ЩУК. Благодаря быстрому гидролизу промежуточного соединения цитроил-КоА этот этап проходит без затрат энергии извне.

На второй стадии образуется изоцитрат (изолимонная кислота) из цитрата через цис-аконитат. Это реакция обратимой изомеризации через образование промежуточной трикарбоновой кислоты, в которой катализатором выступает фермент аконитатгидратаза.

Далее происходит дегидрирование и декарбоксилирование изоцитрата до промежуточного соединения оксалосукцинат с выделением углекислого газа. После декарбоксилирования оксалосукцината образуется енольное соединение, которое перестраивается и превращается в пятиуглеродную кислоту — α-кетоглутарат (оксоглутарата), чем и завершает третью ступень ЦК. Четвертый этап — α-кетоглутарат декарбоксилирует и реагирует с ацетил-КоА. При этом получается сукцинил-КоА, соединение янтарной кислоты и коэнзима-А, выделяется СО2.

Замыкание цикла

На пятой стадии сукцинил-КоА преобразуется в сукцинат (янтарную кислоту). Для этого этапа характерно субстратное фосфолирование, подобное синтезу АТФ при гликолизе. Введение в ЦК фосфорной группы РО3 становится возможным благодаря присутствию фермента ГДФ (гуанозиндифосфата) или АДФ (аденозиндифосфата), которые в процессе синтеза сукцината из дифосфатов становятся трифосфатами.

Начиная с шестой стадии, цикл начинает постепенно замыкаться. Сначала сукцинат под действием каталитического фермента сукцинатдегидрогеназы дегидрирует до фумарата. Дальнейшее дигидрирование приводит к седьмому этапу — образованию L-малата (яблочной кислоты) из фуратата через переходное соединение с карбанионом.

Последняя реакция цикла трикарбоновых кислот малат окисляется до щавелевоуксусной кислоты. Первая стадия следующего ЦК начинается с новой молекулы ацетил-КоА.

Значение и функции

Этот восьмиэтапный циклический процесс, итогом которого является окисление ацетильного остатка до углекислого газа, может показаться излишне сложным. Тем не менее, он имеет огромное значение в метаболизме промежуточных реакций и выполняет ряд функций. К ним относятся:

Цикл Кребса участвуют в катаболизме жиров и углеводов. Соединения, образующиеся на разных стадиях процесса, участвуют в синтезе многих необходимых для организма веществ — глутамина, порфиринов, глицина, фенилаланина, цистеина и других. Когда промежуточные продукты покидают ЦК для участия в синтезе, происходит их замещение с помощью так называемых анаплеротических реакций, которые катализируются регуляторными ферментами, например, пируваткарбоксилазой.

Транспортная функция ЦК заключается в содействии гликолизу. Глюкозу невозможно превратить сразу в АТФ, поэтому механизм гликолиза действует поэтапно и сопровождается постоянным перемещением атомов и катионов водорода от одних соединений к другим. Для их транспортировки нужны специальные соединения, которые получаются на одной из стадий ЦТК. Участвующие в гликолизе коферменты цикла Кребса:

Реакции ЦК имеют и большое клиническое значение. Хотя для людей не свойственны мутации, связанные с генами ферментов, участвующих в цикле, однако их редкие проявления губительны для здоровья. Они могут приводить к опухолям мышц и почек, нарушениям работы нервной системы.

Существует множество видов визуального и слухового отображения цикла Кребса — схемы с формулами, уравнения химических реакций, разнообразные таблицы и даже мнемонические способы для полного запоминания его главных «участников».

Источник

Adblock
detector