Меню

За счет сокращения только продольных мышц

МЫШЕЧНОЕ СОКРАЩЕНИЕ

Мышечное сокращение — совокупность процессов, изменяющих механическое состояние мышцы; проявляется в укорочении мышцы и развитии ею механического напряжения.

Изучение физиологии мышечной системы, в частности механизмов Мышечного сокращения, началось еще в 18 в. Так, Д. Бернулли выдвинул принцип мышечной механики, заключающийся в том, что высота Мышечных сокращений при прочих равных условиях пропорциональна длине мышечных волокон. В середине 19 в. Э. Вебер развил идею возникновения Мышечных сокращений в результате напряжения мышц. Он считал, что мышца является упругим телом, в к-ром силы упругого сопротивления (напряжения) возрастают с нагрузкой. Т. о., была показана зависимость между длиной и напряжением, т. е. что изменение напряжения обусловливает изменение длины мышцы и наоборот. В 20 в. начались исследования тонкой структуры мышечных элементов и биохимических изменений, происходящих при Мышечном сокращении. Было установлено, что в основе сокращения лежит взаимодействие белков актина и миозина, а основной сократительный белок — миозин — обладает аденозинтрифосфатазной активностью. В 50-х гг. Хансон и Хаксли (J. Hanson, H. E. Huxley), сформулировав гипотезу скольжения сократительных нитей, заложили основы совр, понимания ультраструктуры мышц и механизма М. с.

Основой сократительной деятельности мышцы является одиночное Мышечное сокращение, возникающее в ответ на нервный импульс. Графически (рис.) одиночное М. с. имеет вид волны с восходящей и нисходящей фазами. Первая фаза называется сокращением, вторая — расслаблением. Расслабление более продолжительно во времени, чем сокращение. Общее время одиночного М. с. составляет доли секунды и зависит от функционального состояния мышцы. Продолжительность М. с. уменьшается при умеренной работе и возрастает при утомлении. Одиночное М. с. изолированного волокна в условиях постоянной температуры подчиняется закону «все или ничего» (см.). Между потенциалом действия мышцы и началом одиночного М. с. имеется кратковременный промежуток — скрытый период сокращения, во время к-рого потенциал действия распространяется по всей мышце. При этом из саркоплазматического ретикулума происходит выделение ионов кальция в пространство между сократительными протофибриллами (нитями), изменяется эластичность мышцы. В конце скрытого периода сокращения в самой мышце протекают механохимические реакции активации сократительных элементов, результатом к-рых является изотоническое или изометрическое М. с. Изотоническим называется такое М. с., при к-ром мышца свободно укорачивается; при изометрическом М. с. длина мышцы остается постоянной (оба ее конца закреплены) и меняется лишь напряжение. В организме в нормальных условиях в чистом виде изотонического и изометрического М. с. не наблюдается.

Если к мышце, к-рая не успела полностью расслабиться от предыдущего сокращения, поступает новый нервный импульс, то второе Мышечное сокращение накладывается на первое (явление так наз. суперпозиции М. с., или механической суммации). При ритмическом возбуждении мышца приходит в состояние непрерывного М. с. (тетануса). При условии, когда интервал между импульсами небольшой, возникает слитное тетаническое М. с., или гладкий тетанус (см.). Напряжение во время тетануса выше, чем при одиночном М. с., упругие компоненты растягиваются полностью, и мышца достигает максимального напряжения; в процессе одиночного М. с. энергия тратится гл. обр. на растяжение эластических компонентов, расположенных в мышце последовательно,— нитей актина и миозина, Z-пластинки (Z-зоны), соединений концевых саркомеров с сухожилиями и сухожилий.

Поперечнополосатые мышцы имеют два важнейших механических свойства, определяющих характер М. с. Первое известно как взаимоотношение длина — сила (длина — напряжение) мышцы. Суть его заключается в том, что для каждой мышцы может быть найдена длина, при к-рой она развивает максимальную силу (напряжение).

Второе свойство мышц — это взаимозависимость силы и скорости Мышечных сокращений: чем тяжелее груз, тем медленнее его подъем, и чем больше приложенная сила, тем меньше скорость укорочения мышцы. При очень большой нагрузке М. с. становится изометрическим; в этом случае скорость сокращения равна нулю. Без нагрузки скорость М.С. наибольшая. Между этими (экстремальными) значениями скорость укорочения изменяется в зависимости от нагрузки. В организме условия для осуществления той или иной формы мышечной деятельности не всегда оптимальны по параметрам «длина — напряжение» и «сила — скорость». Поэтому при осуществлении того или иного вида М. с. в результате деятельности ц. н. с. селективно отбирается количество быстрых или медленных нейромоторных единиц. Диапазон скоростей М. с. достаточно велик — от долей секунды (скелетные мышцы) до минут (гладкие мышцы). Он определяется многими факторами. Так, волокна поперечнополосатых мышц имеют короткие саркомеры, много миофибрилл, обильную саркотубулярную систему, одно или два нервных окончания; гладкие мышцы характеризуются малым количеством и неупорядоченным расположением миофибрилл, слаборазвитой саркотубулярной системой, низкой активностью миозиновой АТФ-азы.

Мышечное сокращение скелетных мышц может быть вызвано одним нервным импульсом. Для возникновения М. с. гладкой мышцы требуется ритмическая стимуляция. Скорость расслабления скелетных и гладких мышц значительно различается, т. к. зависит от количества упругих элементов в мышце, длины волокон, скорости поглощения ионов кальция и т. д.

Читайте также:  Три типа сокращения мышц

Скорость связывания ионов кальция гладкой мышцей в десять и более раз меньше, чем в поперечнополосатой. В состоянии покоя основная часть ионов кальция в мышечном волокне депонируется в саркоплазматическом ретикулума. Он представляет собой защитную систему внутриклеточных трубочек и цистерн, окружающих каждую миофибриллу. В механизмах М. с. особую роль играет та часть ретикулума, к-рая расположена в области Z-пластинки.

Основной сократительной единицей скелетной мышцы является саркомер — участок мышечного волокна, расположенный между Z-пластинками. В саркомере упорядоченно расположены толстые (миозиновые) и тонкие (актиновые) нити, имеется система продольных и поперечных канальцев (трубочек). Система канальцев состоит из впячиваний сарколеммы, называемых поперечными или Т-канальцами, сети продольных канальцев саркоплазматического ретикулума и пузырьков (концевых цистерн) между миофибриллами. Комплекс образований, включающий Т-канальцы и прилегающие две концевые цистерны, называется триадной системой мышечного волокна. Толстые и тонкие нити имеют зоны перекрытия и соединяются поперечными мостиками. Тонкие нити присоединены к Z-пластинкам.

При М. с. возбуждение мембраны мышечного волокна передается внутрь по канальцам Т-системы, стенки к-рых содержат заряженные частицы и проводят электрический сигнал (процесс перехода от возбуждения к сокращению называется электромеханической связью). Из саркоплазматического ретикулума под влиянием электрического сигнала, поступившего в T-систему, выходят ионы кальция и немедленно вступают во взаимодействие с тропонином, вследствие чего система тропонин — тропомиозин утрачивает способность тормозить взаимодействие актина с миозином (тропонин и тропомиозин — это белки-регуляторы, препятствующие взаимодействию актина и миозина). АТФ-аза миозина активируется актином при участии ионов магния. Энергия для М. с. освобождается активированной АТФ-азой актомиозина, гидролизующей АТФ на АДФ и фосфат. При этом освобождается большое количество энергии (до 10 ккал на 1 моль АТФ). Ресинтез АТФ из АДФ и фосфата происходит за счет креатинфосфата, процессов гликогенолиза и гликолиза (см. Мышечная ткань, биохимия). Прекращение возбуждения ведет к снижению концентрации кальция в межфибриллярном пространстве вследствие активного поглощения кальция мембранами саркоплазматического ретикулума. Энергия для активного поглощения ионов кальция высвобождается при расщеплении АТФ. Этот процесс по времени совпадает с теплопродукцией в фазу расслабления мышечного волокна. Связывание кальция мембранами ретикулума реактивирует систему тропонин — тропомиозин, к-рая вновь начинает тормозить взаимодействие актина и миозина (роль фактора расслабления, или фактора Марша,— вещества, обнаруженного в гомогенате свежей мышцы, понижающего АТФ-азную активность миозина и способствующего расслаблению, следует считать идентичной роли мембран саркоплазматического ретикулума).

Большинство теорий, объясняющих механизм Мышечного сокращения, основывается на идее Хаксли о взаимном скольжении толстых и тонких сократительных нитей. В скелетных мышцах максимальное напряжение развивается при полном взаимном перекрытии миозиновых и актиновых нитей в области образования мостиков. Когда мышца растянута до такой степени, что перекрытие отсутствует, напряжение падает до нуля. При сжатии мышцы тонкие нити, заходя друг за друга, нарушают процесс взаимодействия с толстыми нитями, и напряжение мышцы падает. Скольжение нитей без изменения их длины, помимо образования поперечных мостиков и расщепления АТФ в молекуле миозина, возникает за счет каких-то конформационных изменений. По гипотезе Подольского (R. J. Podolsky) гидролиз АТФ меняет угол наклона мостиков, что приводит к вращению головок миозина или скручиванию миозиновой цепочки. В пользу этой гипотезы (т. е. гипотезы скольжения без изменения длины нитей) говорит тот факт, что напряжение в сокращенной мышце, если ее внезапно расслабить, восстанавливается в два этапа. Предполагают, что каждый мостик состоит из эластического плеча, к-рый, находясь в одном из нескольких энергетических стабильных положений, вступает во взаимодействие с актиновой нитью. Напряжение восстанавливается в силу эластичности основания мостика и поворота миозиновой головки в положение, имеющее более низкий уровень потенциальной энергии. С физ.-хим. позиций М. с. можно представить как процесс перехода из жидкого состояния (комплекс молекул актина, миозина, АТФ, ионов кальция) в высокоэластическое (образование актомиозина, обладающего высокой эластичностью и упругостью).

Нарушения М. с. могут возникать при поражениях различных элементов нейромоторной единицы. Поражение тел мотонейронов или их аксонов, напр. при полиомиелите (см.) пли прогрессивной мышечной дистрофии (см. Миопатия), вызывает падение тонуса, атрофию или дистрофию мышц, мышечную фибрилляцию, нарушение чувствительности мышц к воздействию ацетилхолина, увеличение порогов к электрическому раздражению. Поражение моторной бляшки выражается слабостью и чрезвычайной утомляемостью мышц. Нарушение функции мышечной мембраны приводит к миотонии (см.), к-рая характеризуется нарушением нормального процесса расслабления: миотонические мышцы хорошо сокращаются, но не могут нормально расслабляться. Поражение функции собственно сократительного аппарата мышц наблюдается при прогрессирующей мышечной дистрофии и контрактурах. Нарушение сократительного аппарата наблюдается также и при мышечной гипертрофии, вызываемой чрезмерной нагрузкой какой-либо группы мышц.

Мышечное сокращение изучают методами электронной микроскопии (см.), рентгеноструктурного анализа (см.), быстрого растяжения и быстрого расслабления и др. Для этой цели используют интактную мышцу, изолированный саркомер, волокна, обработанные глицерином, трипсином, изолированный актомиозин.

Читайте также:  Боли в горле с болями мышц шеи

Источник

Механизм мышечных сокращений. Функции и свойства скелетных мышц

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

Из гладких мышц состоит:

Физиологические свойства

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Виды сокращений

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Структура и иннервация скелетных мышц

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

Главная особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Иннервация

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц. Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации. Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов. В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения. Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Структура миофибрилл

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью. Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними. При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Читайте также:  Как часто тренировать отстающую группу мышц

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Механизм мышечного сокращения волокна

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Этапы сокращения

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

Ионы кальция

Для лучшего понимания процесса активации волокна ионами кальция удобно рассмотреть структуру актиновой нити. Длина ее составляет порядка 1 мкм, толщина — от 5 до 7 нм. Это пара закрученных ниток, которые напоминают мономер актина. Примерно через каждые 40 нм здесь находятся сферические тропониновые молекулы, а между цепями — тропомиозиновые.

Когда ионы кальция отсутствуют, то есть миофибриллы расслабляются, длинные тропомиозиновые молекулы блокируют крепление актиновых цепей и мостиков миозина. Но при активизации ионов кальция тропомиозиновые молекулы опускаются глубже, и участки открываются.

Тогда миозиновые мостики прикрепляются к актиновым нитям, а АТФ расщепляется, и сила мышц развивается. Это становится возможным за счет воздействия кальция на тропонин. При этом молекула последнего деформируется, проталкивая тем самым тропомиозин.

Когда мышца расслаблена, в ней на 1 грамм сырого веса содержится больше 1 мкмоль кальция. Соли кальция изолированы и находятся в особых хранилищах. В противном случае мышцы бы все время сокращались.

Хранение кальция происходит следующим образом. На разных участках мембраны клетки мышцы внутри волокна имеются трубки, через которые происходит соединение со средой вне клеток. Это система поперечных трубочек. А перпендикулярно ей находится система продольных, на концах которых — пузырьки (терминальные цистерны), расположенные в непосредственной близости к мембранам поперечной системы. Вместе получается триада. Именно в пузырьках хранится кальций.

Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

3 процесса с АТФ

При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ. Когда реализуется механизм мышечного сокращения скелетной мышцы, энергия АТФ применяется для:

АТФ находится в клеточной мембране, нитях миозина и мембранах ретикулума саркоплазматического. Фермент расщепляется и утилизируется миозином.

Потребление АТФ

Известно, что миозиновые головки взаимодействуют с актином и содержат элементы для расщепления АТФ. Последняя активизируется актином и миозином при наличии ионов магния. Поэтому расщепление фермента происходит при прикреплении миозиновой головки к актину. При этом чем больше поперечных мостиков, тем скорость расщепления будет выше.

Механизм АТФ

После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется. Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне.

Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения.

Ресинтез АТФ

Ресинтез возможно реализовать двумя путями.

Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ. Так как запасов в клетке креатинфосфата намного больше АТФ, ресинтез реализуется очень быстро. В то же время посредством окисления пировиноградной и молочной кислот ресинтез будет осуществляться медленно.

АТФ и КФ могут исчезнуть полностью, если ресинтез будет нарушен ядами. Тогда и кальциевый насос прекратит работу, вследствие чего мышца необратимо сократится (то есть настанет контрактура). Таким образом, нарушится механизм мышечного сокращения.

Физиология процесса

Подытоживая вышесказанное, отметим, что сокращение волокна мышцы состоит в укорочении миофибрилл в каждом из саркомеров. Нити миозина (толстые) и актина (тонкие) связаны концами в расслабленном состоянии. Но они начинают скользящие движения друг навстречу к другу, когда реализуется механизм мышечного сокращения. Физиология (кратко) объясняет процесс, когда под влиянием миозина выделяется необходимая энергия для преобразования АТФ в АДФ. При этом активность миозина будет реализована лишь при достаточном содержании ионов кальция, накапливающихся в саркоплазматической сети.

Источник

Adblock
detector