Меню

Запасной источник энергии в мышце является

Энергетика работы мышц

Источником энергии в клетках является вещество аденозинтрифосфат (АТФ), которое при необходимости распадается до аденозинфосфата (АДФ):

АТФ → АДФ + энергия.

При интенсивной нагрузке имеющийся запас АТФ расходуется всего за 2 секунды. Однако АТФ непрерывно восстанавливается из АДФ, что позволяет мышцам продолжать работать. Существует три основные системы восстановления АТФ: фосфатная, кислородная и лактатная.

Фосфатная система

Фосфатная система выделяет энергию максимально быстро, поэтому она важна там, где требуется стремительное усилие, например, для спринтеров, футболистов, прыгунов в высоту и длину, боксеров и теннисистов.

В фосфатной системе восстановление АТФ происходит за счет креатинфосфата (КрФ), запасы которого имеются непосредственно в мышцах:

КрФ + АДФ → АТФ + креатин.

При работе фосфатной системы не используется кислород и не образуется молочная кислота.

Фосфатная система работает только в течение короткого времени — при максимальной нагрузке совокупный запас АТФ и КрФ истощается за 10 секунд. После завершения нагрузки запасы АТФ и КрФ в мышцах восстанавливаются на 70% через 30 секунд и полностью — через 3–5 минут. Это нужно иметь в виду при выполнении скоростных и силовых упражнений. Если усилие длится дольше 10 секунд или перерывы между усилиями слишком короткие, то включается лактатная система.

Кислородная система

Кислородная, или аэробная, система важна для спортсменов на выносливость, так как она может поддерживать длительную физическую работу.

Производительность кислородной системы зависит от способности организма транспортировать кислород в мышцы. За счет тренировок она может вырасти на 50%.

В кислородной системе энергия образуется, главным образом, в результате окисления углеводов и жиров. Углеводы расходуются в первую очередь, так как для них требуется меньше кислорода, а скорость выделения энергии выше. Однако запасы углеводов в организме ограничены. После их исчерпания подключаются жиры — интенсивность работы при этом снижается.

Соотношение используемых жиров и углеводов зависит от интенсивности упражнения: чем выше интенсивность, тем больше доля углеводов. Тренированные спортсмены используют больше жиров и меньше углеводов по сравнению с неподготовленным человеком, то есть более экономично расходуют имеющиеся запасы энергии.

Окисление жиров происходит по уравнению:

Жиры + кислород + АДФ → АТФ + углекислый газ + вода.

Распад углеводов протекает в два шага:

Глюкоза + АДФ → АТФ + молочная кислота.

Молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода.

Кислород требуется только на втором шаге: если его достаточно, молочная кислота не накапливается в мышцах.

Лактатная система

При высокой интенсивности нагрузки поступающего в мышцы кислорода не хватает для полного окисления углеводов. Образующаяся молочная кислота не успевает расходоваться и накапливается в работающих мышцах. Это приводит к ощущению усталости и болезненности в работающих мышцах, а способность выдерживать нагрузку снижается.

В начале любого упражнения (при максимальном усилии — в течение первых 2 минут) и при резком увеличении нагрузки (при рывках, финишных бросках, на подъемах) возникает дефицит кислорода в мышцах, так как сердце, легкие и сосуды не успевают полностью включиться в работу. В этот период энергия обеспечивается за счет лактатной системы, с выработкой молочной кислоты. Чтобы избежать накопления большого количества молочной кислоты в начале тренировки, нужно выполнить легкую разогревающую разминку.

При превышении определенного порога интенсивности организм переходит на полностью анаэробное энергообеспечение, в котором используются только углеводы. Из-за нарастающей мышечной усталости способность выдерживать нагрузку истощается в течение нескольких секунд или минут, в зависимости от интенсивности и уровня подготовки.

Влияние молочной кислоты на работоспособность

Рост концентрации молочной кислоты в мышцах имеет несколько последствий, которые нужно учитывать при тренировках:

Читайте также:  Упражнения на грудные мышцы на фитболе

В условиях покоя на нейтрализацию половины молочной кислоты, накопившейся в результате усилия максимальной мощности, организму требуется около 25 минут; за 75 минут нейтрализуется 95% молочной кислоты. Если вместо пассивного отдыха выполняется легкая заминка, например, пробежка трусцой, то молочная кислота выводится из крови и мышц намного быстрее.

Высокая концентрация молочной кислоты может вызвать повреждение стенок мышечных клеток, что приводит к изменениям в составе крови. Для нормализации показателей крови может потребоваться от 24 до 96 часов. В этот период тренировки должны быть легкими; интенсивные тренировки сильно замедлят восстановительные процессы.

Слишком высокая частота интенсивных нагрузок, без достаточных перерывов на отдых, приводит к снижению работоспособности, а в дальнейшем — к перетренированности.

Запасы энергии

Энергетические фосфаты (АТФ и КрФ) расходуются за 8–10 секунд максимальной работы. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Как правило, их хватает на 60–90 минут интенсивной работы.

Запасы жиров в организме практически неисчерпаемы. Доля жировой массы у мужчин составляет 10–20%; у женщин — 20–30%. У хорошо тренированных спортсменов на выносливость процент жира может находиться в диапазоне от максимально низкого до относительно высокого (4–13%).

Запасы энергии человека

* Высвобождаемая энергия при переходе в АДФ
* Высвобождаемая энергия при переходе в АДФ
Источник Запас (при весе 70 кг) Длительность Дли-
тель-
ность
интенсивной
работы
Энергети-
ческая система
Особенности
Граммы Ккал
Фосфаты (фосфатная система энергообеспечения )
Фосфаты 230 8* 8—10 секунд Фосфатная Обеспечивают «взрывную» силу. Кислород не требуется
Гликоген (кислородная и лактатная системы энергообеспечения )
Гликоген 300—
400
1 200—
1 600
60—90 минут Кислородная и лактатная При нехватке кислорода образуется молочная кислота
Жиры (кислородная система энергообеспечения )
Жиры Больше 3 000 Больше 27 000 Больше 40 часов Кислородная Требуют больше кислорода; интенсивность работы снижается

По книге Петера Янсена «ЧСС, лактат и тренировки на выносливость».

Источник

Источники энергии для мышечной работы

Покоящаяся мышца, подобно другим тканям, для поддержа­ния постоянства своего состава и непрерывного протекания мета­болических процессов, требует постоянного обеспечения АТФ. В то же время мышца сильно отличается от других тканей тем, что ее потребность в энергии в форме АТФ при сокращении мышцы может почти мгновенно возрастать в 200 раз.

Содержание АТФ в мышце относительно постоянно: около 0,25% массы мышцы. Большая концентрация АТФ приводит к уг­нетению миозиновой АТФазы, что препятствует образованию спа­ек между миозином и актином, а следовательно — мышечному сокращению. С другой стороны, концентрация АТФ не может быть ниже 0,1%, поскольку при этом перестает действовать кальцие­вый насос в пузырьках саркоплазматического ретикулума, и мышца будет сокращаться вплоть до полного исчерпания запасов АТФ и развития ригора стойкого непроходящего сокращения. Запасов АТФ в мышце достаточно на 3—4 одиночных сокращения. Следо­вательно, необходимо постоянное и весьма интенсивное воспол­нение АТФ — ее ресинтез.

Ресинтез АТФ при мышечной деятельности может осуществ­ляться как в ходе реакций, идущих в анаэробных условиях, так и за счет окислительных превращений в клетках, связанных с потреблением кислорода. В скелетных мышцах выявлены три ви­да анаэробных процессов, в ходе которых возможен ресинтез АТФ, и один аэробный.

Рассмотрим все процессы ресинтеза АТФ в мышце и порядок их включения.

1. Креатинкиназная реакция.Первым и самым быстрым процессом ресинтеза АТФ является креатинкиназная реакция. Креатинфосфат (Кф) — макроэргическое вещество, которое при исчерпании запасов АТФ в работающей мышце отдает фосфорильную группу на АДФ:

Читайте также:  Классификация и примеры скелетных мышц человека кратко

Кф + АДФ ↔ К + АТФ

Катализирует этот процесс креатинкиназа, которая относится к фосфотрансферазам (по названию фермента назван рассматри­ваемый процесс).

АТФ и креатин находятся рядом и вблизи от сократительных элементов мышечного волокна. Как только уровень АТФ начинает снижаться, немедленно запускается креатинкиназная реакция, обеспечивающая ресинтез АТФ. Скорость расщепления Кф в ра­ботающей мышце прямо пропорциональна интенсивности выпол­няемой работы и величине мышечного напряжения.

В первые секунды после начала работы, пока концентрация Кф высока, высока и активность креатинкиназы. Почти все ко­личество АДФ, образовавшейся при распаде АТФ, вовлекается в этот процесс, блокируя тем самым другие процессы ресинтеза АТФ в мышце. После того как запасы Кф в мышцах будут исчерпаны примерно на 1/3, скорость креатинкиназной реакции будет снижаться; это вызовет включение других процессов ресин­теза АТФ.

Креатинкиназная реакция обратима. Во время мышечной работы преобладает прямая реакция, пополняющая запасы АТФ, в период покоя — обратная реакция, восстанавливающая концентрацию Кф в мышце. Однако ресинтез Кф возможен от части и по ходу длительной мышечной работы, совершаемой в аэробных условиях.

Креатинкиназная реакция играет основную роль в энер­гообеспечении кратковременных упражнений максимальной мощности — бег на короткие дистанции, прыжки, метание, тя­желоатлетические упражнения.

2. Гликолиз.Следующий путь ресинтеза АТФ — гликолиз. Подробно этот метаболический путь был рассмотрен в разделе «Обмен веществ». Ферменты, катализирующие реакции гликолиза, локализованы на мембранах саркоплазматического ретикулума и в саркоплазме мышечных клеток. Гликогенфосфорилаза и гексокиназа — ферменты гликогенолиза и первой реакции гликолиза — активируются при повы­шении в саркоплазме содержания АДФ и фосфорной кислоты.

Энергетический эффект гликолиза невелик и составляет всего 2 моль АТФ на 1 моль глюкозо-1-фосфата, полученного при фосфоролизе гликогена. Кроме того, следует учесть, что примерно половина всей выделяемой энергии в данном процессе превращается в тепло и не может использоваться при работе мышц; при этом температура мышц повышается до 41—42°С.

Конечным продуктом гликолиза является молочная кислота. Накапливаясь в мышцах, она вызывает изменение концентрации ионов водорода во внутриклеточной среде, т. е. происходит сдвиг рН среды в кислую область. В слабокислой среде происходит акти­вация ферментов цепи дыхания в митохондриях, с одной сто­роны, и угнетение ферментов, регулирующих сокращение мышц (АТФазы миофибрилл) и скорость ресинтеза АТФ в анаэробных условиях, с другой. Но, прежде чем перейти к рассмотрению процесса ресинтеза АТФ в аэробных условиях, отметим, что гликолиз играет важную роль в энергообеспечении упражнений, продолжительность которых составляет от 30 до 150 с. К ним от­носятся бег на средние дистанции, плавание на 100 и 200 м, ве­лосипедные гонки на треке и др. За счет гликолиза совершаются длительные ускорения по ходу упражнения и на финише дис­танции.

3. Ресинтез АТФ в аэробных условиях.Аэробным процессом ре­синтеза АТФ служит окисление глюкозы до оксида углерода (IV) и воды. В разделе «Обмен веществ» подробно рассмотрен этот многостадийный процесс и его энергетический эффект. Сопос­тавляя энергетические эффекты гликолиза и полного распада глю­козы в аэробных условиях, можно констатировать, что второй процесс отличается наибольшей производительностью. Общий вы­ход энергии при аэробном процессе в 19 раз превышает таковой при гликолизе.

Обратим внимание на тот факт, что АТФ, образующаяся в митохондриях при окислительном фосфорилировании, недос­тупна АТФазам, локализованным в саркоплазме мышечных клеток, так как внутренняя мембрана митохондрий непроницае­ма для заряженных нуклеотидов. Поэтому существует система актив­ного транспорта АТФ из матрикса митохондрий в саркоплазму.

Сначала транслоказа осуществляет перенос АТФ из матрикса через внутреннюю мембрану в межмембранное пространство, где АТФ вступает во взаимодействие с креатином, проникающим из сар­коплазмы. Это взаимодействие катализирует митохондриальная креатинкиназа, которая локализована во внешней мембране мито­хондрий. Образующийся креатинфосфат снова переходит в сарко­плазму, где отдает снятый с АТФ остаток фосфорной кислоты на саркоплазматическую АДФ.

Читайте также:  Хрустнуло в мышце руки

Эффективность образования АТФ в процессе окислительного фосфорилирования зависит от снабжения мышцы кислородом. В работающей мышце запасы кислорода невелики: небольшое количество кислорода растворено в саркоплазме, часть кислорода находится в связанном с миоглобином мышц состоянии. Основное количество кислорода, нужного мышце для аэробного ресинтеза АТФ доставляется через систему легочного дыхания и кровообращения. Для образования 1 моль АТФ в процессе окислительного фосфорилирования требуется 3,45 л кислорода; такое количество кислорода потребляется в покое за 10—15 мин, а при интенсив­ной мышечной деятельности — за 1 мин.

4. Миокиназная реакцияпроисходит в мышце при значительном увеличении концентрации АДФ в саркоплазме, когда возможности других путей почти исчерпаны или близки к тому. Суть этой реакции состоит в том, что при взаимодействии 2 молекул АДФ образуется 1 молекула АТФ:

Условия для включения миокиназной реакции возникают при выраженном мышечном утоплении. Поэтому миокиназную реак­цию следует рассматривать как «аварийный» механизм. Миоки­назная реакция мало эффективна, так как из двух молекул АДФ образуется только одна молекула АТФ. Возникшая в результате миокиназной реакции АМФ может путем дезаминирования пре­вращаться в инозинмонофосфат, который не является участником энергетического обмена. Однако увеличение концентрации АМФ в саркоплазме оказывает активирующее действие на ряд ферментов гликолиза, что приводит к повышению скорости анаэробного ресинтеза АТФ. В данном случае миокиназная реакция выполняет роль своеобразного метаболического усилителя, способствующе­го передаче сигнала от АТФазы миофибрилл на АТФ-синтезирующие системы клетки.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература

1. Анисимов и др. Основы биохимии. М., Высшая школа, 1986.

2. Березов Т.Т., Коровкин Б.Ф. Биологическая химия.- М., 1998

4. Волков Н.И., Несен Э.Н., Осипенко А.А. Корсун С.Н. Биохимия мышечной деятельности. Киев: Олимпийская литература. 2000.

5. Комов В.П. Биохимия: учебник для вузов / под ред. Комов В.П., Шведова В.Н., «Дрофа», 2004.

6. Ленинджер А. Основы биохимии. 3 т. М., Мир, 1985.

7. Овчинников Ю.А. Биоорганическая химия, М., Просвещение, 1987.

8. Проскурина И.К. Биохимия. Учебное пособие для вузов. М., Владос, 2004.

9. Спирин А.С. Молекулярная биология. Структура рибосом и биосинтез белка. М., высшая школа, 1986.

10. Страйер Л. Биохимия. 3 т. М., Мир, 1985.

11. Строев Е.А. Биологическая химия. М., Высшая школа, 1986.

12. Уайт, Хендлер, Смит и др. Основы биохимии, в 3-х т. М., Мир, 1981.

13. Филлипович Ю.Б. Основы биохимии. М., Высшая школа, 1986.

Дополнительная литература

2. Бергельсон Л.Д. Мембраны, молекулы, клетки. М., наука, 1982.

3. Бохински Р. Современные воззрения в биохимии. М., Мир, 1987.

4. Гринстейн Б., Гринстейн А. Наглядная биохимия.- М., 2000

5. Диксон М., Уэбб Э. Ферменты. 3 т., М., Мир, 1982.

7. Кнорре Д.Г., Мызина С.Д. Биологическая химия.- М., 1998

8. Колотилова А.И., Глушанков Е.П., Витамины (химия, биохимия, физиологическая роль). ЛГУ, 1976.

9. Кольман Я., Рём К.-Г. Наглядная биохимия.- М., 2000

10. Кристиан де Дюв. Путешествие в мир живой клетки. М., Мир, 1987.

11. Марри Р. и др. Биохимия человека. В 2-х тт.- М., 1993

12. Мецлер Д. Биохимия.- М., 1980.

13. Михайлов С.С. Спортивная биохимия. М.: Советский спорт, 2006.

14. Мохан Р., Глессон М., Гринхафф П.Л. Биохимия мышечной деятельности и физической тренировки. – Киев: Олимпийская литература, 2001

16. Николаев А.Я. Биологическая химия.- М., 2001.

Источник

Adblock
detector